Refine Your Search

Topic

Search Results

Journal Article

Technology Selection for Optimal Power Distribution Efficiency in a Turboelectric Propulsion System

2012-10-22
2012-01-2180
Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
Technical Paper

A System Dynamics Approach for Dynamic Uncertainty Assessment in a PAV Design Environment

2006-08-30
2006-01-2434
One the most critical barriers to the advancement of Personal Air Vehicles in today's market environment is that the technological capabilities can never seem to outweigh the risks associated with financing such an endeavor. To address such a need, a system dynamics approach with the capability to model the uncertainties in the supply chain is presented in this paper. The overall modeling framework is first presented and the modeling process of the various relevant elements, such as demand prediction and manufacturer analysis, is then described. The aim of this research is ultimately to assess the viability of a next-generation aircraft program beyond the static confines of a net present value approach, through the inclusion of dynamic events and uncertainties that can occur throughout the life-cycle of the aircraft.
Technical Paper

Quiet, Clean, and Efficient, but Heavy - Concerns for Future Fuel Cell Powered Personal Air Vehicles

2006-08-30
2006-01-2436
Unfortunately, the promises of efficient, clean, quiet power that fuel cells offer are balanced by extremely low power densities and great infrastructure-related challenges. Studies by government and industry have investigated their feasibility for primary propulsion in light aircraft. These studies have produced mixed results but have tended to rely on integrating fuel cells into existing airframes, with respectably-performing light sport planes being turned into underpowered show planes with horribly compromised range and payload capabilities. Fuel cells today are in the earliest phases of technological development. As an aircraft propulsion system, they are as advanced as the Wright's reciprocating engine was a hundred years ago.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

A Collaborative Design Environment to Support Multidisciplinary Conceptual Systems Design

2005-10-03
2005-01-3435
The Aerospace Systems Design Laboratory at the Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, has recently created the “Collaborative Design Environment” (CoDE), a next-generation design facility supporting efficient, rapid-turnaround conceptual design. The CoDE combines cost-effective, off-the-shelf information technology with advanced design methodologies and tools in a customized, user-centered physical layout that harnesses the power of creative design teams. The CoDE will enable researchers to develop, test and apply new approaches to conceptual design, and to improve modeling and simulation fidelity. It will also support sponsored design projects as well as student teams participating in national design competitions.
Technical Paper

Program and Design Decisions in an Uncertain and Dynamic Market: Making Engineering Choices Matter

2005-10-03
2005-01-3433
The success of a modern, complex engineering program is inherently a dynamic economic exercise. Because of this it is not possible to fully grasp what decisions are important to the success of a program using only the typical static or “frozen” design methods and processes. This paper attempts to provide a basic understanding of these design processes and illustrate what they leave to be desired when used in a true market environment. Further, this paper illustrates a dynamic method using tools from engineering, management, and finance to overcome these weaknesses. The dynamic environment allows decision parameters and metrics to change, along with the potential for true competition. Furthermore, it allows the engineer to determine which design choices matter most to the creation of a successful program and how to make the most appropriate choices in the face of uncertainty.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Methodology for the Conceptual Design Process of Morphing Configurations

2004-11-02
2004-01-3127
Traditional historical-data based design processes are clearly inappropriate for morphing vehicles. There are no historical data for these type of configurations, the appropriate mission for this class of vehicles is unknown, and there are many unique aspects of a morphing vehicle that are dependent on the specific concept chosen. The design process proposed in this paper attempts to account for these difficulties in a flexible and transparent manner while leveraging existing tools and processes wherever possible.
Technical Paper

Bi-level Integrated System Synthesis: A Proposed Application to Aeroelastic Constraint Analysis in a Conceptual Design Environment

2003-09-08
2003-01-3060
The projection of aeroelastic constraints in the design space has long been a want in the design process of vehicles. These properties are usually not established accurately until later phases of design. The desire is to bring another interactive constraint to the conceptual design phase and allow the designer to see the impact of design decisions on aeroelastic characteristics. Even though a number of analysis and optimization tools have been developed to support aeroelastic analysis and optimization in the flight vehicle design process, the toolbox is far from being complete. The results often cannot be obtained in a manner timely enough and the natural division of the engineering team into specialty groups is not supported very well by the aerodynamic-structures monolithic codes typically in the above toolbox. The monolithic codes are also not amenable to the use of concurrent processing now made available by computer technology.
Technical Paper

Implementation of a Physics-Based Decision-Making Framework for Evaluation of the Multidisciplinary Aircraft Uncertainty

2003-09-08
2003-01-3055
In today's business climate, aerospace companies are more than ever in need of rational methods and techniques that provide insights as to the best strategies which may be pursued for increased profitability and risk mitigation. However, the use of subjective, anecdotal decision-making remains prevalent due to the absence of analytical methods capable of capturing and forecasting future needs. Negotiations between airframe and engine manufacturers could benefit greatly from a structured environment that facilitates efficient, rational, decision-making. Creation of such an environment can be developed through a parametric physics-based, stochastic formulation that uses Response Surface Equations as meta-models to expedite the process.
Technical Paper

Development of an Object Oriented Vehicle Library for Automated Design Analysis

2001-09-11
2001-01-3034
In today’s emerging parametric and probabilistic design environments, disciplinary or multidisciplinary analysis data are represented efficiently with the use of metamodels. Each metamodel is an efficient replacement for a particular design analysis tool. An object oriented library is developed in this paper to represent vehicle configuration in a generic manner and assist the analysis data collection for the metamodeling process. The library is used to produce input files for design analysis tools. It can also be used to create preprocessors for integration environments used in the design process. This allows for smoother integrations of analysis programs within such environments as the environment now needs only replace data in one central input file rather than a file for each analysis tool.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

2000-10-10
2000-01-5559
The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
Technical Paper

A Parametric Design Environment for Including Signatures Analysis in Conceptual Design

2000-10-10
2000-01-5564
System effectiveness has become the prime metric for the evaluation of military aircraft. As such, it is the designer's goal to maximize system effectiveness. Industry documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness. Today's operating environments demand low observable aircraft which are able to reliably eliminate valuable, time critical targets. Thus, it is desirable to be able to evaluate the signatures of a vehicle, as well as the influence of signatures on the systems effectiveness of a vehicle. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section and must be considered from the very beginning of the design process. This research strives to meet these needs by developing a parametric geometry radar cross section prediction tool.
Technical Paper

A Method for Technology Selection Based on Benefit, Available Schedule and Budget Resources

2000-10-10
2000-01-5563
The accepted paradigm in aerospace systems design was to design systems sequentially and iteratively to maximize performance based on minimum weight. The traditional paradigm does not work in the rapidly changing global environment. A paradigm shift from the norm of “design for performance” to “design for affordability and quality” has been occurring in recent decades to respond to the changing global environment. Observations were made regarding new tenets needed to bridge the gap from the old to the new. These tenets include new methods and techniques for designing complex systems due to uncertainty and mulit-dimensionality, consideration of the life cycle of the system, and the methods needed to assess breakthrough technologies to meet aggressive goals of the future. The Technology Identification, Evaluation, and Selection method was proposed as a possible solution to the paradigm shift.
Technical Paper

Methodology for Assessing Survivability Tradeoffs in the Preliminary Design Process

2000-10-10
2000-01-5589
Aircraft survivability is a key metric that contributes to the overall system effectiveness of military aircraft as well as to a lower life cycle cost. The aircraft designer, thus, must have a complete and thorough understanding of the interrelationships between the components of survivability and the other traditional disciplines as well as how they affect the overall life cycle cost of the aircraft. If this understanding occurs, the designer can then evaluate which components and technologies will create the most robust aircraft system with the best system effectiveness at the lowest cost. A synthesis and modeling environment is formulated and presented that will allow trade-off studies and analysis of survivability concepts to be conducted. This environment then becomes the testbed used to develop a comprehensive and structured probabilistic methodology, called the Probabilistic System of System Effectiveness Methodology (POSSEM), that will allow these trades to be conducted.
Technical Paper

Elements of an Emerging Virtual Stochastic Life Cycle Design Environment

1999-10-19
1999-01-5638
The challenge of designing next-generation systems that meet goals for system effectiveness, environmental compatibility, and cost has grown to the point that traditional design methodologies are becoming ineffective. Increases in the analysis complexity required, the number of objectives and constraints to be evaluated, and the multitude of uncertainties in today’s design problems are primary drivers of this situation. A new environment for design has been formulated to treat this situation. It is viewed as a testbed, in which new techniques in such areas as design-oriented/physics-based analysis, uncertainty modeling, technology forecasting, system synthesis, and decision-making can be posed as hypotheses. Several recent advances in elements of this multidisciplinary environment, termed the Virtual Stochastic Life Cycle Design Environment, are summarized in this paper.
Technical Paper

An Application of a Technology Impact Forecasting (TIF) Method to an Uninhabited Combat Aerial Vehicle

1999-10-19
1999-01-5633
In today’s atmosphere of lower U.S. defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. The methodology presented in this paper details a comprehensive and structured process in which to explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a forecasting environment for use in conjunction with defined technology scenarios. The advantages and limitations of the method will be discussed, as well its place in an overall methodology used for technology infusion.
Technical Paper

A Probabilistic Design Methodology for Commercial Aircraft Engine Cycle Selection

1998-09-28
985510
The objective of this paper is to examine ways in which to implement probabilistic design methods in the aircraft engine preliminary design process. Specifically, the focus is on analytically determining the impact of uncertainty in engine component performance on the overall performance of a notional large commercial transport, particularly the impact on design range, fuel burn, and engine weight. The emphasis is twofold: first is to find ways to reduce the impact of this uncertainty through appropriate engine cycle selections, and second is on finding ways to leverage existing design margin to squeeze more performance out of current technology. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the overall aircraft performance (it is on the same order of magnitude as the impact of the cycle itself).
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

Probabilistic Analysis of an HSCT Modeled with an Equivalent Laminated Plate Wing

1997-10-01
975571
The High Speed Civil Transport (HSCT), a supersonic commercial transport currently under development, presents several challenges to traditional conceptual design. The current historical database used by many commercial transport design processes only include data for subsonic transports and therefore does not apply to innovative new configurations such as the HSCT. Therefore, physics-based, preliminary design tools must be used to model the characteristics of advanced aircraft in conceptual sizing routines. In addition, the evaluation of the aircraft design space often requires the analysis of many configurations in order to assess the impact of design constraints and determine the attainable range of system level metrics, a process which is very time consuming in both modeling and computer run time.
X