Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Proposal and Validation of 3D-CFD Framework for Ultra-Lean Hydrogen Combustion in ICEs

2024-04-09
2024-01-2685
In recent months, the increasing debate within the European Union to review the ban on internal combustion engines has led to the pursuit of environmentally neutral solutions for ICEs, as an attempt to promote greater economic and social sustainability. Interest in internal combustion engines remains strong to uphold the principle of technological neutrality. In this perspective, the present paper proposes a numerical methodology for 3D-CFD in-cylinder simulations of hydrogen-fueled internal combustion engines. The combustion modelling relies on G-equation formulation, along with Damköhler and Verhelst turbulent and laminar flame speeds, respectively. Numerical simulations are validated with in-cylinder pressure traces and images of chemiluminescent hydrogen flames captured through the piston of a single-cylinder optical spark-ignition engine.
Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

A Multi-Zone Combustion Model Integrated with a Fast Tabulated Chemical Kinetics Applied for the Simulation of HCCI Engines Supplied with Hydrogen or Carbon-Based Fuels

2022-03-29
2022-01-0388
Aiming at meeting the stringent regulations imposed by the EU and other legislators in the transport sector, various advanced combustion modes for Internal Combustion Engines (ICEs) are currently under investigation. Among those, Homogeneous Charge Compression Ignition (HCCI) appears a promising solution, simultaneously reducing pollutant emission and enhancing thermal efficiency. Hence, to simulate HCCI combustion mode, a general multi-zone model has been developed and implemented through user coding into a commercial software (GT-Power™). This model is based on a control mass Lagrangian multi-zone approach, and it incorporates a procedure based on an off-line tabulation of chemical kinetics (Tabulated Kinetic of Ignition - TKI). It performs an accurate and fast prediction of the air/fuel mixture auto-ignition, combining the accuracy of detailed chemistry with a lighter computational effort.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Journal Article

Experimental and 0D Numerical Investigation of Ultra-Lean Combustion Concept to Improve the Efficiency of SI Engine

2021-04-06
2021-01-0384
Recently, the car manufacturers are moving towards innovative Spark Ignition (SI) engine architectures with unconventional combustion concepts, aiming to comply with the stringent regulation imposed by EU and other legislators. The introduction of burdensome cycles for vehicle homologation, indeed, requires an engine characterized by a high efficiency in the most of its operating conditions, for which a conventional SI engine results to be ineffective. Combustion systems which work with very lean air/fuel mixture have demonstrated to be a promising solution to this concern. Higher specific heat ratio, minor heat losses and increased knock resistance indeed allow improving fuel consumption. Additionally, the lower combustion temperatures enable to reduce NOX production. Since conventional SI engines can work with a limited amount of excess air, alternative solutions are being developed to overcome this constraint and reach the above benefit.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Experimental and 1D Numerical Investigations on the Exhaust Emissions of a Small Spark Ignition Engine Considering the Cylinder-by-Cylinder Variability

2020-04-14
2020-01-0578
This paper reports a numerical and experimental analysis on a twin-cylinder turbocharged Spark Ignition engine carried out to investigate the cylinder-to-cylinder variability in terms of performance, combustion evolution and exhaust emissions. The engine was tested at 3000 rpm in 20 different steady-state operating conditions, selected with the purpose of observing the influence of cylinder-by-cylinder A/F ratio variations and the EGR effects on the combustion process and exhaust emissions for low to medium/high loads. The experimental outcomes showed relevant differences in the combustion evolution (characteristic combustion angles) between cylinders and not negligible variations in the emissions of the single cylinder exhaust and the overall engine one. This misalignment resulted to be due to differences in the injected fuel amount by the port injectors in the two cylinders, mainly deriving from the specific fuel rail geometry.
Technical Paper

Performance and Emissions of an Advanced Multi-Cylinder SI Engine Operating in Ultra-Lean Conditions

2019-09-09
2019-24-0075
In this work the performance and noxious emissions of a prototype Spark Ignition (SI) engine, working in ultra-lean conditions, are investigated. It is a four-cylinder engine, having a very high compression ratio, and an active pre-chamber. The required amount of air is provided by a low-pressure variable geometry turbocharger, coupled to a high-pressure E-compressor. The engine is equipped with a variable valve timing device on the intake camshaft. The goal of this activity is to support the development and the calibration of the described engine, and to exploit the full potential of the ultra-lean concept. To this aim, a combustion model for a pre-chamber engine, set up and validated in a previous paper for a similar single-cylinder unit, is utilized. It is coupled to additional in-house developed sub-models, employed for the prediction of the in-cylinder turbulence, heat transfer, knock and pollutant emissions.
Technical Paper

CFD Analysis and Knock Prediction into Crevices of Piston to Liner Fireland of an High Performance ICE

2019-09-09
2019-24-0006
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: it is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. “Standard” knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses.
Technical Paper

A Comparison between Different Moving Grid Techniques for the Analysis of the TCC Engine under Motored Conditions

2019-04-02
2019-01-0218
The accurate representation of Internal Combustion Engine (ICE) flows via CFD is an extremely complex task: it strongly depends on a combination of highly impacting factors, such as grid resolution (both local and global), choice of the turbulence model, numeric schemes and mesh motion technique. A well-founded choice must be made in order to avoid excessive computational cost and numerical difficulties arising from the combination of fine computational grids, high-order numeric schemes and geometrical complexity typical of ICEs. The paper focuses on the comparison between different mesh motion technologies, namely layer addition and removal, morphing/remapping and overset grids. Different grid strategies for a chosen mesh motion technology are also discussed. The performance of each mesh technology and grid strategy is evaluated in terms of accuracy and computational efficiency (stability, scalability, robustness).
Technical Paper

A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines

2019-04-02
2019-01-0471
The description of knock phenomenon is a critical issue in a combustion model for Spark-Ignition (SI) engines. The most known theory to explain this phenomenon is based on the Auto-Ignition (AI) of the end-gas, ahead the flame front. The accurate description of this process requires the handling of various aspects, such as the impact of the fuel composition, the presence of residual gas or water in the burning mixture, the influence of cool flame heat release, etc. This concern can be faced by the solution of proper chemistry schemes for gasoline blends. Whichever is the modeling environment, either 3D or 0D, the on-line solution of a chemical kinetic scheme drastically affects the computational time. In this paper, a procedure for an accurate and fast prediction of the hydrocarbons auto-ignition, applied to phenomenological SI engine combustion models, is proposed. It is based on a tabulated approach, operated on both ignition delay times and reaction rates.
Technical Paper

A Quasi-Dimensional Model of Pre-Chamber Spark-Ignition Engines

2019-04-02
2019-01-0470
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy of their fleets. Among these techniques, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of spark-ignition engines. Application of pre-chamber ignition systems is a promising solution to realize a favorable air/fuel mixture ignitability and an adequate combustion speed, even with very lean mixtures. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. Conventional gasoline fuel is injected into the main chamber, while the pre-chamber is fed with compressed natural gas. In a first stage, an experimental campaign was carried out at various speeds, spark timings and air-fuel ratios.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Journal Article

Combined Effects of Valve Strategies, Compression Ratio, Water Injection, and Cooled EGR on the Fuel Consumption of a Small Turbocharged VVA Spark-Ignition Engine

2018-04-03
2018-01-0854
In this work, various techniques are numerically investigated to assess and quantify their relative effectiveness in reducing the Brake Specific Fuel Consumption (BSFC) of a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine. The analyzed solutions include the Variable Compression Ratio (VCR), the port Water Injection (WI), and the external cooled Exhaust Gas Recirculation (EGR). The numerical analysis is developed in a 1D modeling framework. The engine is schematized in GT-Power™ environment, employing refined sub-models of the in-cylinder processes, such as the turbulence, combustion, knock, and heat transfer. The combustion and knock models have been extensively validated in previous papers, at different speed/load points and intake valve strategies, including operations with a relevant internal EGR rate and with liquid WI.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion

2018-04-03
2018-01-0856
As known, reliable information about underlying turbulence intensity is a mandatory pre-requisite to predict the burning rate in quasi-dimensional combustion models. Based on 3D results reported in the companion part I paper, a quasi-dimensional turbulence model, embedded under the form of “user routine” in the GT-Power™ software, is here presented in detail. A deep discussion on the model concept is reported, compared to the alternative approaches available in the current literature. The model has the potential to estimate the impact of some geometrical parameters, such as the intake runner orientation, the compression ratio, or the bore-to-stroke ratio, thus opening the possibility to relate the burning rate to the engine architecture. Preliminarily, a well-assessed approach, embedded in GT-Power commercial software v.2016, is utilized to reproduce turbulence characteristics of a VVA engine.
Technical Paper

Experimental and Numerical Analysis of Spray Evolution, Hydraulics and Atomization for a 60 MPa Injection Pressure GDI System

2018-04-03
2018-01-0271
In recent years, the GDI (Gasoline Direct Injection) technology has significantly spread over the automotive market under the continuous push toward the adoption of combustion systems featuring high thermodynamic conversion efficiency and moderate pollutant emissions. Following this path, the injection pressure level has been progressively increased from the initial 5-15 MPa level nowadays approaching 35 MPa. The main reason behind the progressive injection pressure increase in GDI engines is the improved spray atomization, ensuring a better combustion process control and lower soot emissions. On the other hand, increasing injection pressure implies more power absorbed by the pumping system and hence a penalty in terms of overall efficiency. Therefore, the right trade-off has to be found between soot formation tendency reduction thanks to improved atomization and the energetic cost of a high pressure fuel injection system.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses

2018-04-03
2018-01-0850
Recently, a growing interest in the development of more accurate phenomenological turbulence models is observed, since this is a key pre-requisite to properly describe the burn rate in quasi-dimensional combustion models. The latter are increasingly utilized to predict engine performance in very different operating conditions, also including unconventional valve control strategies, such as EIVC or LIVC. Therefore, a reliable phenomenological turbulence model should be able to physically relate the actuated valve strategy to turbulence level during the engine cycle, with particular care in the angular phase when the combustion takes place.
Technical Paper

A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation

2017-10-08
2017-01-2196
High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
X