Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Technical Paper

Combustion Process Investigation in a DISI Engine Fuelled with n-butanol Through Digital Imaging and Chemiluminescence

2015-09-01
2015-01-1887
Direct-injection spark-ignition (DISI) engines have been adopted increasingly by the automotive industry in recent years due to their performance, reduced impact on the environment, and customer demand for advanced technology. However, detailed combustion processes in such engines are still not thoroughly analysed and understood. This work reports on the effects of different control parameters on the combustion process, such as fuel type, ignition timing and exhaust gas recirculation. Pure n-butanol and gasoline were used. All experiments were performed at 2000 rpm and 100 bar injection pressure in a transparent single-cylinder DISI engine equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). Crank angle resolved 2D chemiluminescence in the UV range for OH radical and CO2 detection was performed with an ICCD camera and a high-speed CMOS camera was used for cycle resolved imaging.
Technical Paper

Effect of Different Fuels Properties on Emissions and Performance of a Light Duty Four-Cylinder Diesel Engine Under Premixed Combustion

2014-10-13
2014-01-2674
The use of biodiesel or oxygenated fuels from renewable sources in diesel engines is of particular interest because of the low environmental impact that can be achieved. The present paper reports results of an experimental investigation performed on a light duty diesel engine fuelled with biodiesel, gasoline and butanol mixed, at different volume fractions, with mineral diesel. The investigation was performed on a turbocharged DI four cylinder diesel engine for automotive applications equipped with a common rail injection system. Engine tests were carried out at 2500 rpm, 0.8 MPa of brake mean effective pressure selecting a single injection strategy and performing a parametric analysis on the effect of combustion phasing and oxygen concentration at intake on engine performance and exhaust emissions. The experiments demonstrated that the fuel properties have a strong impact on soot emissions.
Technical Paper

Multi-Wavelength Spectroscopic Investigations of the Post-Injection Strategy Effect on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Fuelled with B5 and B30

2013-10-14
2013-01-2519
Optical diagnostic was applied to undiluted engine exhaust to supply a low cost and real time evaluation of the oil dilution tendency of selected fuels. Specifically, UV-visible-near IR extinction spectroscopy was applied in the exhaust line of a Euro 5 turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system. The engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel. The proposed experimental methodology allowed to identify the contribution to the multi-wavelength extinction of soot, fuel vapor, hydrocarbons and nitrogen oxide. Further, the evolution of each species for different post-injection interval settings was followed. On-line optical results were correlated with off-line liquid fuel absorption values. Moreover, spectroscopic measurements were linked to in-cylinder pressure related data and with HC and smoke exhaust emissions.
Technical Paper

Combustion Optimization of a Marine DI Diesel Engine

2013-09-08
2013-24-0020
Enhanced calibration strategies and innovative engine combustion technologies are required to meet the new limits on exhaust gas emissions enforced in the field of marine propulsion and on-board energy production. The goal of the paper is to optimize the control parameters of a 4.2 dm3 unit displacement marine DI Diesel engine, in order to enhance the efficiency of the combustion system and reduce engine out emissions. The investigation is carried out by means of experimental tests and CFD simulations. For a better control of the testing conditions, the experimental activity is performed on a single cylinder prototype, while the engine test bench is specifically designed to simulate different levels of boosting. The numerical investigations are carried out using a set of different CFD tools: GT-Power for the engine cycle analysis, STAR-CD for the study of the in-cylinder flow, and a customized version of the KIVA-3V code for combustion.
Technical Paper

Investigation of the Effect of Boost Pressure and Exhaust Gas Recirculation Rate on Nitrogen Oxide and Particulate Matter Emissions in Diesel Engines

2013-09-08
2013-24-0017
In recent years, due to the growing problem of environmental pollution and climate change internal combustion engine stroke volume size has been reduced. The use of down-sized engines provides benefit for reducing emissions and fuel consumption especially at the inner city driving conditions. However, when the engine demands additional power, utilizing a turbocharging system is required. This study is a joint work of Istituto Motori CNR with Automotive Laboratory of Mechanical Engineering Faculty of Istanbul Technical University (ITU) and the objective of this study was devoted to increase the understanding of various engine operating conditions on emissions, especially at low load. The trade-off between Nitrogen Oxide (NOx) and Particulate Matter (PM) emissions in a Diesel engine has been examined depending on turbocharging rates and the rate of Exhaust Gas Recirculation (EGR) applied.
Technical Paper

Experimental Investigation on the Combustion and Emissions of a Light Duty Diesel Engine Fuelled with Butanol-Diesel Blend

2013-04-08
2013-01-0915
In the present paper, results of an experimental investigation carried out in a modern Diesel engine running at different operating conditions and fuelled with commercial diesel and n-butanol-diesel blend are reported. The investigation was focused on the management of injection strategy and combustion timing (CA50) exploring the effect of intake oxygen concentration and boost pressure on engine out emissions. The aim of the paper was to compare, with respect to commercial diesel, the effects of a fuel blend with a lower cetane number and higher volatility on performance and engine out emissions. Engine tests, with baseline diesel and a blend made by the baseline low sulphur diesel with 20% in volume of n-butanol (B20), were performed comparing engine out gaseous, smoke emissions and combustion efficiency. The investigation was performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
Technical Paper

Optical Investigation of Post-injection Strategy Impact on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Biodiesel Blends

2013-04-08
2013-01-1127
Multi-wavelength ultraviolet-visible extinction spectroscopy was applied to follow the evolution of fuel vapor injected by post-injection along the exhaust line of a common-rail turbocharged direct-injection diesel engine at moderate speed and load. The exhaust line was specifically designed and customized to allow the insertion of the optical access upstream of the Diesel Oxidation Catalyst. During the experimental campaign, the engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel, monitoring emissions upstream of the catalyst and exhaust gas temperature across the catalyst. Tests were performed at different engine operating conditions with particular attention to moderate speed and load.
Technical Paper

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-04-16
2012-01-1127
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Technical Paper

Optical Investigation of Premixed Low-Temperature Combustion of Lighter Fuel Blends in Compression Ignition Engines

2011-09-11
2011-24-0045
Optical imaging and UV-visible detection of in-cylinder combustion phenomena were made in a single cylinder optically accessed high swirl multi-jets compression ignition engine operating with two different fuels and two EGR levels. A commercial diesel fuel and a lighter fuel blend of diesel (80%) and gasoline (20%), named G20, were tested for two injection pressures (70 and 140 MPa) and injection timings in the range 11 CAD BTDC to 5 CAD ATDC. The blend G20 has a lower cetane number, is more volatile and more resistant to the auto-ignition than diesel yielding an effect on the ignition delay and on the combustion performance. Instantaneous fuel injection rate, in-cylinder combustion pressure, NOx and smoke engine out emissions were measured. Taking into account the particular configuration of the engine, the efficiency was estimated by determining the area under the working engine cycle.
Technical Paper

Effects of Premixed Low Temperature Combustion of Fuel Blends with High Resistance to Auto-ignition on Performances and Emissions in a High Speed Diesel Engine

2011-09-11
2011-24-0049
This paper reports results of an experimental investigation to demonstrate the potential to employ blends of fuels having low cetane numbers that can provide high resistance to auto-ignition to reduce simultaneously NOx and smoke. Because of the higher resistance to auto-ignition, blends of diesel and gasoline at different volume fraction may provide more time for the mixture preparation by increasing the ignition delay. The result produces the potential to operate under partially premixed low temperature combustion with lower levels of EGR without excessive penalties on fuel efficiency. In addition to the diesel fuel, the tested blends were mixed by the baseline diesel with 20% and 40% of commercial EURO IV 98 octane gasoline by volume, denoted G20 and G40. The experimental activity has been performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
Technical Paper

Effects of Low Temperature Premixed Combustion (LTPC) on Emissions of a Modern Diesel Engine for Passenger Cars

2010-04-12
2010-01-0333
In this paper, a Low Temperature Premixed Combustion (LTPC) was investigated employing a four cylinder D.I. common rail Diesel engine, used for passenger cars on the European market. Experiments were carried out setting the engine speed at 2500 rpm with a fuel amount of 26 mg/str to realize an operating condition close to the point of NEDC at 0.8 MPa of BMEP. The experimental approach was the management of the start of injection, injection pressure and EGR rates as a method to control NOx and soot production. The investigation was first carried out testing engine performances and emissions as set from the commercial engine map. Afterward, engine tests were carried out exploring performances, gaseous and smoke emissions at late start of combustion [10 to 17.5 cad ATDC], injection pressures from 80 to 120 MPa and EGR rates up to 50%.
X