Refine Your Search

Topic

Author

Search Results

Technical Paper

Co-Simulation of a BEV Thermal Management System with Focus on Advanced Simulation Methodologies

2023-10-31
2023-01-1609
In battery electric vehicles (BEV), thermal management is a key technique to improve efficiency and lifetime. Currently, manufacturers use different cooling concepts with numerous architectures. This work describes the development of a co-simulation framework to optimize BEV thermal management on system level, using advanced simulation methodologies also on component level, merging simulation and testing. Due to interactions between multiple conditioning circuits, thermal management optimization requires an overall vehicle approach. Thus, a full vehicle co-simulation of a BEV is developed, combining 1D thermal management software KULI and MATLAB/Simulink. Within co-simulation, the precise modeling of vehicle’s subsystems is important to predict thermal behavior and to calculate dynamic heating and cooling demands as well as exchanged energy flows with the thermal management system.
Technical Paper

Hydrogen Hybrid ICE Powertrains with Ultra-Low NOx Emissions in Non-Road Mobile Machinery

2023-04-11
2023-01-0471
In this paper, we will show the potentials of reducing NOx emissions of an H2-ICE to an ultra-low level by hybridizing the H2-ICE in an NRMM powertrain. Real-world measurement data of NRMM together with a simulated hybrid powertrain and operating strategy form the input data for the H2-ICE on the test bench. We have modified a turbocharged four-cylinder in-line gasoline engine for use with directly injected hydrogen. Within several iteration loops, we obtained measurement data that shows that, depending on the operating strategy, ultra-low NOx emissions are reachable. The combination of hybridization, which implies the possibility of recuperation, and the CO2 emission-free H2-ICE leads to a highly efficient, robust, and economic drivetrain with the lowest emissions, perfectly suitable for Non-Road Machinery. Additionally, we will discuss the overall coupled measurement and simulation setup and the reachable NOx emission levels in our tested setup.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Technical Paper

Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions

2018-04-03
2018-01-0848
The CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interest in engine downsizing, up-torquing, and alternative fuels for modern spark ignition (SI) engines, there is a need to better understand the conditions that fuels are subjected to in the CFR engine during octane rating. To take into account fuel properties, such as fuel heat of vaporization, laminar flame speed and auto-ignition chemistry; and understand their impacts on combustion knock, it is essential to estimate accurate cylinder conditions. In this study, the CFR F1/F2 engine was modeled using GT-Power with the Three Pressure Analysis (TPA) and the model was validated for different fuels and engine conditions.
Journal Article

Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine

2018-04-03
2018-01-0210
Of late there has been a resurgence in studies investigating parameters that quantify combustion knock in both standardized platforms and modern spark-ignition engines. However, it is still unclear how metrics such as knock (octane) rating, knock onset, and knock intensity are related and how fuels behave according to these metrics across a range of conditions. As part of an ongoing study, the air supply system of a standard Cooperative Fuel Research (CFR) F1/F2 engine was modified to allow mild levels of intake air boosting while staying true to its intended purpose of being the standard device for American Society for Testing and Materials (ASTM)-specified knock rating or octane number tests. For instance, the carburation system and intake air heating manifold are not altered, but the engine was equipped with cylinder pressure transducers to enable both logging of the standard knockmeter readout and state-of-the-art indicated data.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Technical Paper

Feedforward Control of Fuel Distribution on Advanced Dual-Fuel Engines with Varying Intake Valve Closing Timings

2016-10-17
2016-01-2312
This study examines the dynamics and control of an engine operated with late intake valve closure (LIVC) timings in a dual-fuel combustion mode. The engine features a fuel delivery system in which diesel is direct-injected and natural gas is port-injected. Despite the benefits of LIVC and dual-fuel strategy, combining these two techniques resulted in efficiency losses due to the variability of the combustion process across cylinders. The difference in power production across cylinders ranges from 9% at an IVC of 570°ATDC* to 38% at an IVC of 620 °ATDC and indicates an increasingly uneven fuel distribution as the intake valve remains open longer in the compression stroke. This paper describes an approach for controlling the amount of fuel injected into each cylinders’ port of an inline six- cylinder heavy-duty dual-fuel engine to minimize the variations in fuel distribution across cylinder.
Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Journal Article

Cylinder-to-Cylinder Variations in Power Production in a Dual Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

2016-04-05
2016-01-0776
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations

2016-04-05
2016-01-0593
Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Journal Article

Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles

2011-09-11
2011-24-0096
This paper describes the validation of a CFD code for mixture preparation in a direct injection hydrogen-fueled engine. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located injector. A single-hole and a 13-hole nozzle are used at about 100 bar and 25 bar injection pressure. Numerical results from the commercial code Fluent (v6.3.35) are compared to measurements in an optically accessible engine. Quantitative planar laser-induced fluorescence provides phase-locked images of the fuel mole-fraction, while single-cycle visualization of the early jet penetration is achieved by a high-speed schlieren technique. The characteristics of the computational grids are discussed, especially for the near-nozzle region, where the jets are under-expanded. Simulation of injection from the single-hole nozzle yields good agreement between numerical and optical results in terms of jet penetration and overall evolution.
Technical Paper

Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines

2011-04-12
2011-01-0675
This paper performs a parametric analysis of the influence of numerical grid resolution and turbulence model on jet penetration and mixture formation in a DI-H2 ICE. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located single-hole injector nozzle. The simulation includes the intake and exhaust port geometry, in order to account for the actual flow field within the cylinder when injection of hydrogen starts. A reduced geometry is then used to focus on the mixture formation process. The numerically predicted hydrogen mole-fraction fields are compared to experimental data from quantitative laser-based imaging in a corresponding optically accessible engine. In general, the results show that with proper mesh and turbulence settings, remarkable agreement between numerical and experimental data in terms of fuel jet evolution and mixture formation can be achieved.
X