Refine Your Search

Topic

Search Results

Journal Article

Characterizations of Deployment Rates in Automotive Technology

2012-04-16
2012-01-1057
Passenger cars in the United States continue to incorporate increasing levels of technology and features. However, deployment of technology requires substantial development and time in the automotive sector. Prior analyses indicate that deployment of technology in the automotive sector can be described by a logistic function. These analyses refer to maximum annual growth rates as high as 17% and with developmental times of 10-15 years. However, these technologies vary widely in complexity and function, and span decades in their implementation. This work applies regression with a logistic form to a wide variety of automotive features and technologies and, using secondary regression, identifies broader trends across categories and over time.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Fuel Economy Benefits and Aftertreatment Requirements of a Naturally Aspirated HCCI-SI Engine System

2008-10-06
2008-01-2512
This vehicle simulation study estimates the fuel economy benefits of an HCCI engine system and assesses the NOx, HC and CO aftertreatment performance required for compliance with emissions regulations on U.S. and European regulatory driving cycles. The four driving cycles considered are the New European Driving Cycle, EPA City Driving Cycle, EPA Highway Driving Cycle, and US06 Driving Cycle. For each driving cycle, the following influences on vehicle fuel economy were examined: power-to-weight ratio, HCCI combustion mode operating range, driving cycle characteristics, requirements for transitions out of HCCI mode when engine speeds and loads are within the HCCI operating range, fuel consumption and emissions penalties for transitions into and out of HCCI mode, aftertreatment system performance and tailpipe emissions regulations.
Technical Paper

Effects of Hydrogen Enhancement on Efficiency and NOx Emissions of Lean and EGR-Diluted Mixtures in a SI Engine

2005-04-11
2005-01-0253
Dilute operation of a SI engine offers attractive performance incentives. Lowered combustion temperatures and changes in the mixture composition inhibit NOx formation and increase the effective value of the ratio of burned gas specific heats, increasing gross indicated efficiency. Additionally, reduced intake manifold throttling minimizes pumping losses, leading to higher net indicated efficiency. These benefits are offset by the reduced combustion speed of dilute fuel-air mixtures, which can lead to high cycle-to-cycle variation and unacceptable engine behavior characteristics. Hydrogen enhancement can suppress the undesirable consequences of dilute operation by accelerating the combustion process, thereby extending the dilution limit. Hydrogen would be produced on-board the vehicle with a gasoline reforming device such as the plasmatron. High dilution at higher loads would necessitate boosting to meet the appropriate engine specific power requirements.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

2001-09-24
2001-01-3544
Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
Technical Paper

Effects of Oxygenated Fuels on DI Diesel Combustion and Emissions

2001-03-05
2001-01-0648
Experiments to study the effects of oxygenated fuels on emissions and combustion were performed in a single-cylinder direct-injection (DI) diesel engine. A matrix of oxygen containing fuels assessed the impact of weight percent oxygen content, oxygenate chemical structure, and oxygenate volatility on emissions. Several oxygenated chemicals were blended with an ultra-low sulfur diesel fuel and evaluated at an equivalent energy release and combustion phasing. Additional experiments investigated the effectiveness of oxygenated fuels at a different engine load, a matched fuel/air equivalence ratio, and blended with a diesel fuel from the Fischer-Tropsch process. Interactions between emissions and critical engine operating parameters were also quantified. A scanning mobility particle sizer (SMPS) was used to evaluate particle size distributions, in addition to particulate matter (PM) filter and oxides of nitrogen (NOx) measurements.
Technical Paper

Heat Transfer and Mixture Vaporization in Intake Port of Spark-Ignition Engine

1997-10-01
972983
Time-resolved heat flux and gas temperature measurements in the intake port of a spark ignition engine are presented. Experiments were pursued for motored, propane fired, and liquid fuel operation. Heat transfer coefficients were built from the dry data. Also, heat transfer rates in the port and off the back of the intake valve were integrated over the main flow phases. For a typical low-load propane-fired operating condition, heat transfer in the port caused a mean intake air temperature increase of approximately 10°C. The main different intake flow phases, induction or forward flow, displacement backflow, and valve overlap backflow, contributed approximately 10°C, 3°C, and negative 3°C, respectively. These mixture temperature changes are expected to be also applicable for liquid fuel injected cases. While the heat flux instrumentation was primarily intended for dry operation of the engine, liquid fuel experiments were also pursued.
Technical Paper

Flow Characteristics in Intake Port of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement

1996-10-01
961997
A computational fluid dynamics (CFD) prediction of the transient flow in the intake system of a spark ignition engine is compared to experimental data. The calculation was performed for a single cylinder version of a pre-1995 Ford two-valve production engine, while experiments were carried out on a single cylinder Ricardo Mark 3 research engine with similar overall geometric parameters. While the two engines have somewhat different geometries, this was not considered to be a significant problem for our study of flow features. Both set-ups employed gaseous fuel. The calculation was performed using the commercially available Star-CD code incorporating the complete intake manifold runner and cylinder into the mesh. Cylinder pressures were in good agreement with experiment indicating that wave dynamics were well captured. Comparison was also made to the measured instantaneous gas temperatures along the intake system.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

Evaluation of a One-Zone Burn-Rate Analysis Procedure Using Production SI Engine Pressure Data

1993-10-01
932749
A single-zone burn-rate analysis based on measured cylinder pressure data proposed by Gatowski et al. in 1984 was evaluated over the full load and speed range of a spark-ignition engine. The analysis, which determines the fuel mass burning rate based on the First Law of Thermodynamics, includes sub-models for the effects of residual fraction, heat transfer, and crevices. Each of these sub-models was assessed and calibrated. Cylinder pressure data over the full engine operating range obtained from two different engines were used to examine the robustness of the analysis. The sensitivity of predictions to the parameters wall temperature, heat transfer model coefficients and exponent, swirl ratio, motoring polytropic constant, in-cylinder mass, and to uncertainty in pressure data was evaluated.
Technical Paper

Predicting the Effects of Air and Coolant Temperature, Deposits, Spark Timing and Speed on Knock in Spark Ignition Engines

1992-10-01
922324
The prediction of knock onset in spark-ignition engines requires a chemical model for the autoignition of the hydrocarbon fuel-air mixture, and a description of the unburned end-gas thermal state. Previous studies have shown that a reduced chemistry model developed by Keck et al. adequately predicts the initiation of autoignition. However, the combined effects of heat transfer and compression on the state of the end gas have not been thoroughly investigated. The importance of end-gas heat transfer was studied with the objective of improving the ability of our knock model to predict knock onset over a wide range of engine conditions. This was achieved through changing the thermal environment of the end gas by either varying the inlet air temperature or the coolant temperature. Results show that there is significant heating of the in-cylinder charge during intake and a substantial part of the compression process.
Technical Paper

Intake Port Phenomena in a Spark-Ignition Engine at Part Load

1991-10-01
912401
The flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection play a significant role in the mixture preparation process, especially at part load. The backflow of the hot burned gas from the cylinder into the intake port when the intake valve is opened breaks up any liquid film around the inlet valve, influences gas and wall temperatures, and has a major effect on the fuel vaporization process. The backflow of in-cylinder mixture with its residual component during the compression stroke prior to inlet valve closing fills part of the port with gas at higher than fresh mixture temperature. To quantify these phenomena, time-resolved measurements of the hydrocarbon concentration profile along the center-line of the intake port were made with a fast-response flame ionization detector, and of the gas temperature with a fine wire resistance thermometer, in a single-cylinder engine running with premixed propane/air mixture.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine

1990-02-01
900021
A conventional spark plug and a spark plug with smaller electrodes were studied in M.I.T.'s transparent square piston engine. The purpose was to learn more about how the electrode geometry affects the heat losses to the electrodes and the electrical performance of the ignition system, and how this affects the flame development process in an engine. A schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process, for as many as 100 consecutive cycles. Voltage and current waveforms were recorded to characterize the spark discharge, and cylinder pressure data were used to characterize the engine performance. The spark plug with the smaller electrodes was shown to reduce the heat losses to the electrodes, and thereby extend the stable operating regime of the engine. At conditions close to the stable operating limit, cycle-by-cycle variations in heat losses cause significant cyclic variations in flame development.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Computer Models For Evaluating Premixed and Disc Wankel Engine Performance

1986-03-01
860613
This paper describes two types of computer models which have been developed to analyze the performance of both premixed-charge and direct-injection stratified-charge Wankel engines. The models are based on a thermodynamic analysis of the contents of the engine's chambers. In the first type of model, the rate of combustion is predicted from measured chamber pressure by use of a heat release analysis. The analysis includes heat transfer to the chamber walls, work transfer to the rotor, enthalpy loss due to flows into crevices and due to leakage flows into adjacent chambers, and enthalpy gain due to fuel injection. The second type of computer model may be used to predict the chamber pressure during a complete engine cycle. From the predicted chamber pressure, the overall engine performance parameters are calculated. The rate of fuel burning as an algebraic function of crank angle is specified.
Technical Paper

Heat Release Analysis of Engine Pressure Data

1984-10-01
841359
In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation for γ(T). Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.
Technical Paper

Divided-Chamber Diesel Engine, Part II: Experimental Validation of a Predictive Cycle-Simulation and Heat Release Analysis

1982-02-01
820274
In this study, a set of performance and emissions data, obtained from a single-cylinder divided-chamber automotive diesel engine over the normal engine operating range, is described and analyzed. The data are used to evaluate a computer simulation of the engine's operating cycle, described in a companion paper, which predicts the properties of gases inside the engine cylinder throughout the cycle, and engine efficiency, power and NOx emissions. Satisfactory agreement between predictions and measurements is obtained over most of the engine's operating range. The characteristics of the experimental pre- and main-chamber pressure versus crank angle data are then examined in detail. A heat release analysis appropriate for divided-chamber diesel engines is developed and used to obtain heat release rate profiles through the combustion process.
Technical Paper

Simulation Studies of the Effects of Turbocharging and Reduced Heat Transfer on Spark-Ignition Engine Operation

1980-02-01
800289
A computer simulation of the four-stroke spark-ignition engine cycle has been used to examine the effects of turbocharging and reduced heat transfer on engine performance, efficiency and NOx emissions. The simulation computes the flows into and out of the engine, calculates the changes in thermodynamic properties and composition of the unburned and burned gas mixtures within the cylinder through the engine cycle due to work, heat and mass transfers, and follows the kinetics of NO formation and decomposition in the burned gas. The combustion process is specified as an input to the program through use of a normalized rate of mass burning profile. From this information, the simulation computes engine power, fuel consumption and NOx emissions. Wide-open-trottle predictions made with the simulation were compared with experimental data from a 5.7ℓ naturally-aspirated and a 3.8ℓ turbocharged production engine.
X