Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Cost-Effective D-DPF Design of Aftertreatment System for Non-Road Mobile Machinery China Stage IV

2024-04-09
2024-01-2136
Since Non-Road Mobile Machinery (NRMM) China stage IV legislation has been implemented from 2022, some engines within maximum rated power between 37 to 560 kW are required for gaseous emissions, particulate matter (PM) and particulate number (PN) control, evaluated over testing cycle of Non-Road Transient Cycle (NRTC) and Non-Road Steady Cycle (NRSC). The pollutants from diesel engines, widely used in NRMM applications, can be controlled using aftertreatment systems which are comprised of a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF), or optionally a selective catalytic reduction (SCR). In this paper, a compact D-DPF design is introduced and discussed on application in harvesters, tractors, and forklifts. Because harvesters have higher exhaust gas temperature than other applications, more passive regeneration behaviors were observed. Subsequently, a compact design of DOC catalyst on DPF (D-DPF) was studied, in other words is to coat DOC catalyst on DPF.
Technical Paper

Emission Control on a Dual Model Hybrid Passenger Car to Meet China 6 Legislation

2024-04-09
2024-01-2444
With the increasing number of hybrid vehicles in the Chinese market, research on aftertreatment systems for hybrid vehicles has become very popular. China has currently implemented national on-road China 6 regulations for emission control of all gasoline and diesel vehicles, including hybrid ones. So far, there are few papers on the optimization of aftertreatment for hybrid gasoline vehicles. Due to the introduction of electric motors in hybrid vehicles, the engine starts frequently and leads to inconsistent stability of engine operating conditions and brings the challenge to emission control of engine exhaust. This article selects a highly popular hybrid gasoline vehicle in China for research, which is a dual-mode hybrid (DM hybrid) passenger car. There is an obvious correlation between the emissions between the driving pattern and the hybrid strategy.
Technical Paper

An optimized, data-driven reaction mechanism for Dual-Fuel combustion of Ammonia and Diesel Primary Reference Fuels

2023-09-29
2023-32-0101
The possibility to operate current diesel engines in dual-fuel mode with the addition of an alternative fuel is fundamental to accelerate the energy transition to achieve carbon neutrality. The simulation of the dual- fuel combustion process with 0D/1D combustion models is fundamental for the performance prediction, but still particularly challenging, due to chemical interactions of the mixture. The authors defined a novel data-driven workflow for the development of combustion reaction mechanisms and used it to generate a dual-fuel mechanism for Ammonia and Diesel Primary Reference Fuels (DPRF) suitable for efficient combustion simulations in heavy duty engines, with variable cetane number Diesel fuels. A baseline reaction mechanism was created by merging the detailed ammonia mechanism by Glarborg et al. with reaction pathways for n- hexadecane and 2,2,4,4,6,8,8-heptamethylnonane from a well-established multi-component fuel mechanism.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

Sub-23nm Particle Emissions from China6 Gasoline Vehicles over Various Driving Cycles

2023-04-11
2023-01-0395
Sub-23nm particles emission from the light-duty vehicle is widely discussed now and possible to be counted into the next stage emission legislation, such as Euro7. In this article, 16 China6 gasoline vehicles were tested over the WLTC and two surrogate RDE lab cycles for particulate number (PN) emission, the difference between PN23 (particle size >23nm) and PN10 (particle size>10nm) emission was analyzed. Testing results showed that the average PN10 emission increased 59% compared to PN23, which will bring great challenges for those vehicles to meet the future regulation requirement if sub-23nm particle is counted. The sub-23nm particles emission was proportional to the PN23 particles emission and generated mostly from the cold start or the transient engine conditions with rich combustion. Compared to the proposal of Euro 7, PN10 emission from some tested vehicles will need further two orders of magnitude reduction.
Technical Paper

Detection and Diagnosis of Speed Sensor Air Gap Change Fault

2022-10-28
2022-01-7058
Aiming at the fault that the speed signal of the automatic transmission output shaft Hall-type speed sensor fluctuates abnormally due to the change of the air gap, the method of fault detection and diagnosis is proposed. Firstly, a limited low-pass filter module was designed according to the characteristics of the fault, and a good filter effect is achieved. Secondly, by comparing the signals before and after filtering, a residual generator is designed, and an adaptive dynamic threshold is designed by analyzing the causes and influencing factors of the residual, which can configure a reliable and effective threshold for the generated residual in real time, which improves the fault identification robustness and effectiveness. Then, a fault debounce method is designed to avoid frequent false alarms of occasional faults. Finally, simulation verification proves the effectiveness of the method.
Technical Paper

Calculation Methods Impact on Real-Driving-Emissions Particulate Number Evaluation: Moving Averaging Window in China 6 vs. Raw Mileage Averaging in Euro 6d

2022-03-29
2022-01-0567
RDE test has been introduced to the light-duty vehicle certification process in both China 6 and Euro 6d standards. The RDE test shall be performed on-road with PEMS, which is developed to complement the current laboratory certification of vehicles and ensure cars to deliver low emissions under more realistic on-road driving conditions. Particulate matter has been highly perceived as a significant contributor to human health risks and thus strictly regulated globally. For the RDE evaluation, the MAW method used by the China 6 standard is usually found less stringent than the RMA method used by the Euro 6d standard. In the present study, both of the MAW and RMA methods were applied to different driving cycles and operating conditions, which met the general RDE test requirements, yet resulted in different evaluated PN results.
Journal Article

Assessing Thermomechanical Fatigue of a Cast Aluminum Alloy Cylinder Head of an Internal Combustion Engine

2020-04-14
2020-01-1077
Cast aluminum alloys are used for cylinder heads in internal combustion engines to meet low weight and high strength (lightweight) design requirements. In the combustion chamber, the alloy experiences harsh operating conditions; i.e., temperature variation, constrained thermal expansion, chemical reaction, corrosion, oxidation, and chemical deposition. Under these conditions, thermomechanical fatigue (TMF) damage arises in the form of mechanical damage, environmental (oxidation) damage, and creep damage. In the present work, several important properties that influence the TMF life of the cylinder head have been identified through TMF and finite element analysis (FEA). The results show that improving the strength at high temperatures helps improve TMF life on the exhaust side of the head. On the other hand, improving strength and ductility extend TMF life at low temperature on the intake side.
Journal Article

Analytical Examination of the Relationship between Fuel Properties, Engine Efficiency, and R Factor Values

2019-04-02
2019-01-0309
The variability in gasoline energy content, though most frequently not a consumer concern, is an issue of concern for vehicle manufacturers in demonstrating compliance with regulatory requirements. Advancements in both vehicle technology, test methodology, and fuel formulations have increased the level of visibility and concern with regard to the energy content of fuels used for regulatory testing. The R factor was introduced into fuel economy calculations for vehicle certification in the late 1980s as a means of addressing batch-to-batch variations in the heating value of certification fuels and the resulting variations in fuel economy results. Although previous studies have investigated values of the R factor for modern vehicles through experimentation, subsequent engine studies have made clear that it is difficult to distinguish between the confounding factors that influence engine efficiency when R is being studied experimentally.
Journal Article

Estimation of the Fuel Efficiency Potential of Six Gasoline Blendstocks Identified by the U.S. Department of Energy’s Co-Optimization of Fuels and Engines Program

2019-01-15
2019-01-0017
Six blendstocks identified by the Co-Optimization of Fuels & Engines Program were used to prepare fuel blends using a fixed blendstock for oxygenate blending and a target RON of 97. The blendstocks included ethanol, n-propanol, isopropanol, isobutanol, diisobutylene, and a bioreformate surrogate. The blends were analyzed and used to establish interaction factors for a non-linear molar blending model that was used to predict RON and MON of volumetric blends of the blendstocks up to 35 vol%. Projections of efficiency increase, volumetric fuel economy increase, and tailpipe CO2 emissions decrease were produced using two different estimation techniques to evaluate the potential benefits of the blendstocks. Ethanol was projected to provide the greatest benefits in efficiency and tailpipe CO2 emissions, but at intermediate levels of volumetric fuel economy increase over a smaller range of blends than other blendstocks.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Filter-based control of particulate matter from a lean gasoline direct injection engine

2016-04-05
2016-01-0937
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

2016-04-05
2016-01-0897
The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

2015-09-06
2015-24-2518
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
X