Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines

2019-04-02
2019-01-0260
The current trend in automobiles is towards electrical vehicles, but for the most part these vehicles still require an internal combustion engine to provide additional range and flexibility. These engines are under stringent emissions regulations, in particular, for the reduction of CO2. Gas engines which run lean burn combustion systems provide a viable route to these emission reductions, however designing these engines to provide sustainable and controlled combustion under lean conditions at λ=2.0 is challenging. To address this challenge, it is possible to use a scavenged Pre-Chamber Ignition (PCI) system which can deliver favorable conditions for ignition close to the spark plug. The lean charge in the main combustion chamber is then ignited by flame jets emanating from the pre-chamber nozzles. Accurate prediction of flame kernel development and propagation is essential for the analysis of PCI systems.
Technical Paper

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES

2019-04-02
2019-01-0198
It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
Technical Paper

Assessment of Two Premixed LES Combustion Models in an Engine-Like Geometry

2018-04-03
2018-01-0176
Large Eddy Simulation (LES) of premixed turbulent combustion in a confined cylinder setup at engine relevant conditions has been carried out for three different initial turbulence intensities, mimicking different flame propagation regimes. Direct Numerical Simulation (DNS) of the setup under investigation provides the reference data to be compared against. The DNS fields have been filtered on the LES grid and are used as initial conditions for the LES at onset of combustion, guaranteeing a direct comparability of the single realizations between the modeled and reference data. Two different combustion models, the G-Equation and CMC-premixed (Conditional Moment Closure) are compared with respect to their predictive capabilities as well as their usability and computational cost. While the G-Equation is a widely adopted approach for industrial applications and usually relies on a tunable turbulent flame speed closure, the novel LES-CMC comes as a tuning parameter free model.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Comparison and Sensitivity Analysis of Turbulent Flame Speed Closures in the RANS G-Equation Context for Two Distinct Engines

2016-10-17
2016-01-2236
Three-dimensional reactive computational fluid dynamics (CFD) plays a crucial role in IC engine development tasks complementing experimental efforts by providing improved understanding of the combustion process. A widely adopted combustion model in the engine community for (partially) premixed combustion is the G-Equation where the flame front is represented by an iso-level of an arbitrary scalar G. A convective-reactive equation for this iso-surface is solved, for which the turbulent flame speed ST must be provided. In this study, the commonly used and well-established Damköhler approach is compared to a novel correlation, derived from an algebraic closure for the scalar dissipation of reaction progress as proposed by Kolla et al. [1].
Journal Article

Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels

2016-04-05
2016-01-0755
An existing three-stage ignition delay model which has seen successful application to Primary Reference Fuels (PRFs) has been extended to six surrogate fuels which constitute potential candidates for future Homogeneous Charge Compression Ignition (HCCI) engines. The fuels include petroleum-derived and oxygenated components and can be divided into low, intermediate and high cetane number groups. A new methodology to obtain the model parameters is presented which relies jointly on simulation and experimental data: in a first step, constant volume adiabatic reactor simulations using chemical kinetic mechanisms are performed to generate ignition delays for a very wide range of conditions, namely variations in equivalence ratio, Exhaust Gas Recirculation (EGR), pressure and temperature.
Technical Paper

CFD-Simulation of Ignition and Combustion in Lean Burn Gas Engines

2016-04-05
2016-01-0800
In this study, the ignition and combustion process in a lean burn, spark-ignited stationary gas engine was investigated using a level-set (G-equation) combustion model in the context of Reynolds-averaged Navier-Stokes (RANS) simulations. An ignition model based on Herweg and Maly [1] and its coupling with the G-equation combustion model was implemented in the framework of the STARCD/es-ICE solver. A first validation was performed by means of spherically expanding methane/air flame measurements in an optically accessible spherical combustion bomb at elevated pressure by Lawes et al. [2]: predictions of the kernel size and the flame expansion are in good agreement with the experimental data at both stoichiometric and lean conditions. The model was subsequently applied to study combustion in a premixed lean burn stationary gas engine with a displacement volume of roughly two liters, ignited by means of a centrally located “G-type” spark plug.
Journal Article

Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas

2014-10-13
2014-01-2607
Knock is often the main limiting factor for brake efficiency in spark ignition engines and is mostly attributed to auto-ignition of the unburned mixture in front of the flame. In order to study knock in a systematic way, spark angle sweeps with ethanol and iso-octane have been carried out on single cylinder spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed fuel/air mixtures. Much earlier and stronger knock can be observed for iso-octane compared to ethanol at otherwise same engine operating conditions due to the cooling effect and higher octane number of ethanol, leading to different cycle-to-cycle variation behavior. Detailed chemical kinetic mechanisms are used to compute ignition delay times at conditions relevant to the measurements and are compared to empirical correlations available in literature. The different correlations are used in a knock model approach and are tested against the measurement data.
Journal Article

Influence of EGR on Post-Injection Effectiveness in a Heavy-Duty Diesel Engine Fuelled with n-Heptane

2014-10-13
2014-01-2633
Numerical simulations of a heavy-duty diesel engine fuelled with n-heptane have been performed with the conditional moment closure (CMC) combustion model and an embedded two-equation soot model. The influence of exhaust gas recirculation on the interaction between post- and main- injection has been investigated. Four different levels of EGR corresponding to intake ambient oxygen volume fractions of 12.6, 15, 18 and 21% have been considered for a constant intake pressure and temperature and unchanged injection configuration. Simulation results have been compared to the experimental data by means of pressure and apparent heat-release rate (AHRR) traces and in-cylinder high-speed imaging of natural soot luminosity and planar laser-induced incandescence (PLII). The simulation was found to reproduce the effect of EGR on AHRR evolutions very well, for both single- and post-injection cases.
Technical Paper

Optical Investigations of Soot Reduction Mechanisms using Post-Injections in a Cylindrical Constant Volume Chamber (CCVC)

2014-10-13
2014-01-2839
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in the NOx emissions. In earlier research it was observed that soot reduction due to a post injection is based on three reasons: increased turbulence (1) and heat (2) from the post injection during soot oxidation and lower soot formation due to smaller main injection for similar load conditions (3). The second effect of heat addition during the soot oxidation is debated in the literature. The experimental investigation presented in the current work provides insight into the underlying mechanisms of soot formation and reduction using post injections under different operating conditions. The experimental data have been obtained using a cylindrical constant volume chamber with high optical access. The soot evolution has been obtained using 2-color-pyrometry.
Technical Paper

CMC Model Applied to Marine Diesel Spray Combustion: Influence of Fuel Evaporation Terms

2014-10-13
2014-01-2738
This study presents an application of the conditional moment closure (CMC) combustion model to marine diesel sprays. In particular, the influence of fuel evaporation terms has been investigated for the CMC modeling framework. This is motivated by the fact that substantial overlap between the dense fuel spray and flame area is encountered for sprays in typical large two-stroke marine diesel engines which employ fuel injectors with orifice diameters of the order of one millimeter. Simulation results are first validated by means of experimental data from the Wärtsilä optically accessible marine spray combustion chamber in terms of non-reactive macroscopic spray development. Subsequently, reactive calculations are carried out and validated in terms of ignition delay time, ignition location, flame lift-off length and temporal evolution of the flame region. Finally, the influence of droplet terms on spray combustion is analyzed in detail.
Journal Article

Numerical Study of the Influence of EGR on In-Cylinder Soot Characteristics in a Heavy-Duty Diesel Engine using CMC

2014-04-01
2014-01-1134
This paper presents numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia Laboratories performed with the conditional moment closure (CMC) model employing a reduced n-heptane chemical mechanism coupled with a two-equation soot model. The influence of exhaust gas recirculation (EGR) on in-cylinder processes is studied considering different ambient oxygen volume fractions (8 - 21 percent), while maintaining intake pressure and temperature as well as the injection configuration unchanged. This corresponds to EGR rates between 0 and 65 percent. Simulation results are first compared with experimental data by means of apparent heat release rate (AHRR) and temporally resolved in-cylinder soot mass, where a quantitative comparison is presented. The model was found to fairly well reproduce ignition delays as well as AHRR traces along the EGR variation with a slight underestimation of the diffusion burn portion.
Technical Paper

Influence of Injector Diameter (0.2-1.2 mm range) on Diesel Spray Combustion: Measurements and CFD Simulations

2014-04-01
2014-01-1419
In this study, the influence of injector diameter on the combustion of diesel sprays in an optically accessible combustion chamber of marine engine dimensions and conditions has been investigated experimentally as well as numerically. Five different orifice diameters ranging between 0.2 and 1.2 mm have been considered at two different ambient temperatures: a “cold” case with 800 K and a “warm” case with 900 K, resulting in a total of ten different test conditions. In the experiment, the reactive spray flames were characterized by means of high-speed OH* chemiluminescence imaging. The measurements revealed a weak impact of the injector diameter on ignition delay (ID) time and flame lift-off length (LOL) whereas the influence of ambient temperature was found to be more pronounced, consistent with former studies in the literature for smaller orifice diameters.
Technical Paper

Integration of a Cool-Flame Heat Release Rate Model into a 3-Stage Ignition Model for HCCI Applications and Different Fuels

2014-04-01
2014-01-1268
The heat release of the low temperature reactions (LTR or cool-flame) under Homogeneous Charge Compression Ignition (HCCI) combustion has been quantified for five candidate fuels in an optically accessible Rapid Compression Expansion Machine (RCEM). Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented. In our previous work, an empirical, three-stage, Arrhenius-type ignition delay model, parameterized on shock tube data, was found to be applicable also in a transient, engine-relevant environment.
Journal Article

Ignition Delays of Different Homogeneous Fuel-air Mixtures in a Rapid Compression Expansion Machine and Comparison with a 3-Stage-ignition Model Parameterized on Shock Tube Data

2013-10-14
2013-01-2625
An optically accessible Rapid Compression Expansion Machine (RCEM) has been used to investigate the homogeneous auto-ignition of five candidate fuels for Homogenous Charge Compression Ignition (HCCI) combustion. Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. The PRF25 and PRF50 were selected in order to approximately match the CN of the two Naphthas. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented.
Journal Article

Experimental Investigation of Multi-In-Cylinder Pyrometer Measurements and Exhaust Soot Emissions Under Steady and Transient Operation of a Heavy-Duty Diesel Engine

2013-09-08
2013-24-0177
Future engine emission legislation regulates soot from Diesel engines strictly and requires improvements in engine calibration, fast response sensor equipment and exhaust gas aftertreatment systems. The in-cylinder phenomena of soot formation and oxidation can be analysed using a pyrometer with optical access to the combustion chamber. The pyrometer collects the radiation of soot particles during diffusion combustion, and allows the calculation of soot temperature and a proportional value for the in-cylinder soot density (KL). A four-cylinder heavy-duty Diesel engine was equipped in all cylinders with prototype pyrometers and state of the art pressure transducers. The cylinder specific data was recorded crank angle-resolved for a set of steady-state and transient operating conditions, as well as exhaust gas recirculation (EGR) addition and over a wide range of soot emissions.
Journal Article

Predicting In-Cylinder Soot in a Heavy-Duty Diesel Engine for Variations in SOI and TDC Temperature Using the Conditional Moment Closure Model

2013-09-08
2013-24-0016
Numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia National Laboratories have been performed with the multidimensional conditional moment closure (CMC) model using a reduced n-heptane chemical mechanism coupled with a two-equation soot model. Simulation results are compared to the high-fidelity experimental data by means of pressure traces, apparent heat release rate (AHRR) and time-resolved in-cylinder soot mass derived from optical soot luminosity and multiple wavelength pyrometry in conjunction with high speed soot cloud imaging. In addition, spatial distributions of soot relevant quantities are given for several operating conditions.
Technical Paper

Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine

2013-09-08
2013-24-0112
Ignition systems for large lean burn gas engines are challenged by large energy deposition requirements to ensure stable and reliable inflammation of the premixed charge. In this study, two different ignition systems are investigated experimentally: ignition by means of injecting a small amount of diesel spray and its subsequent autoignition is compared to the ignition with an un-scavenged pre-chamber spark plug over a wide range of engine relevant conditions such as methane equivalence ratios and thermomechanical states. The ignition behavior as well as the combustion phase of the two systems is investigated using an optically accessible Rapid Compression Expansion Machine (RCEM). Filtered OH-chemiluminescence images of the ignition and combustion were taken with a UV intensified high speed camera through the piston window.
Journal Article

Simulations of Diesel Sprays Using the Conditional Moment Closure Model

2013-04-08
2013-01-1618
Numerical simulations of diesel sprays in a constant-volume vessel have been performed with the conditional moment closure (CMC) combustion model for a broad range of conditions. On the oxidizer side these include variations in ambient temperature (800-1100 K), oxygen volume fraction (15-21%) and density (7.3-58.5 kg/m₃) and on the fuel side variation in injector orifice diameter (50-363 μm) and fuel pressure (600-1900 bar); in total 22 conditions. Results are compared to experimental data by means of ignition delay and flame lift-off length (LOL). Good agreement for both quantities is reported for the vast majority of conditions without any changes to model constants: the variations relating to the air side are quantitatively accurately predicted; for the fuel side (viz. orifice diameter and injection pressure) the trends are qualitatively well reproduced.
X