Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

Abdominal Impact Response to Rigid-Bar, Seatbelt, and Airbag Loading

2001-11-01
2001-22-0001
This study was conducted to resolve discrepancies and fill in gaps in the biomechanical impact response of the human abdomen to frontal impact loading. Three types of abdominal loading were studied: rigid-bar impacts, seatbelt loading, and close-proximity (out-of-position) airbag deployments. Eleven rigid-bar free-back tests were performed into the mid and upper abdomens of unembalmed instrumented human cadavers using nominal impact speeds of 6 and 9 m/s. Seven fixed-back rigid-bar tests were also conducted at 3, 6, and 9 m/s using one cadaver to examine the effects of body mass, spinal flexion, and repeated testing. Load-penetration corridors were developed and compared to those previously established by other researchers. Six seatbelt tests were conducted using three cadavers and a peak-loading rate of 3 m/s. The seatbelt loading tests were designed to maximize belt/abdomen interaction and were not necessarily representative of real-world crashes.
Technical Paper

Prediction of Airbag-Induced Forearm Fractures and Airbag Aggressivity

2001-11-01
2001-22-0024
This study continued the biomechanical investigations of forearm fractures caused by direct loading of steering-wheel airbags during the early stages of deployment. Twenty-four static deployments of driver airbags were conducted into the forearms of unembalmed whole cadavers using a range of airbags, including airbags that are depowered as allowed by the new federal requirements for frontal impact testing. In general, the depowered airbags showed a reduction in incidence and severity of forearm fractures compared to the pre-depowered airbags tested. Data from these twenty-four tests were combined with results from previous studies to develop a refined empirical model for fracture occurrence based on Average Distal Forearm Speed (ADFS), and a revised value for fifty-percent probability of forearm-bone fracture of 10.5 m/s. Bone mineral content, which is directly related to forearm tolerance, was found to be linearly related to arm mass.
Technical Paper

An Improved Seating Accommodation Model with Application to Different User Populations

1998-02-23
980651
A new approach to driver seat-position modeling is presented. The equations of the Seating Accommodation Model (SAM) separately predict parameters of the distributions of male and female fore/aft seat position in a given vehicle. These distributions are used together to predict specific percentiles of the combined male-and-female seat-position distribution. The effects of vehicle parameters-seat height, steering-wheel-to-accelerator pedal distance, seat-cushion angle, and transmission type-are reflected in the prediction of mean seat position. The mean and standard deviation of driver population stature are included in the prediction for the mean and standard deviation of the seat-position distribution, respectively. SAM represents a new, more flexible approach to predicting fore/aft seat-position distributions for any driver population in passenger vehicles. Model performance is good, even at percentiles in the tails of the distribution.
Technical Paper

Development of a New Seating Accommodation Model

1996-02-01
960479
Dynamic seat-position testing conducted recently at UMTRI on several different vehicles indicates that, in many cases, the current seating accommodation model represented in SAE J1517 does not accurately predict the distribution of driver seat positions. In general, J1517 tends to predict population percentile seat positions that are forward of observed percentile seat positions, and differences can be as much as 60 mm. It was hypothesized that vehicle factors other than seat height can have substantial and independent effects on driver seat position. The effects of steering-wheel position, seat height, seat-cushion angle, and transmission type on driver fore/aft seat position are being investigated, and results are being used to develop a new driver seating accommodation model called SAM.
X