Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An optimized, data-driven reaction mechanism for Dual-Fuel combustion of Ammonia and Diesel Primary Reference Fuels

2023-09-29
2023-32-0101
The possibility to operate current diesel engines in dual-fuel mode with the addition of an alternative fuel is fundamental to accelerate the energy transition to achieve carbon neutrality. The simulation of the dual- fuel combustion process with 0D/1D combustion models is fundamental for the performance prediction, but still particularly challenging, due to chemical interactions of the mixture. The authors defined a novel data-driven workflow for the development of combustion reaction mechanisms and used it to generate a dual-fuel mechanism for Ammonia and Diesel Primary Reference Fuels (DPRF) suitable for efficient combustion simulations in heavy duty engines, with variable cetane number Diesel fuels. A baseline reaction mechanism was created by merging the detailed ammonia mechanism by Glarborg et al. with reaction pathways for n- hexadecane and 2,2,4,4,6,8,8-heptamethylnonane from a well-established multi-component fuel mechanism.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

Aftermarket Fuel Additives and their Effects on GDI Injector Performance and Particulate Emissions

2022-08-30
2022-01-1074
Gasoline Direct Injection (GDI) fuel injectors are fouled when carbon deposits build-up on the injector tip, impeding fuel droplet atomization and dispersion. These issues, if left untreated, can lead to losses in engine power and fuel economy, as well as increased emissions of particulate matter (PM). Bottled aftermarket gasoline detergents are commonly used to remove deposits and restore injector performance. A performance analysis of three classes of bottled gasoline additives was performed, focusing on products that do not contain nitrogen-based detergents; products containing nitrogen-based detergents; and a new class of gasoline detergent formulations designed specifically for GDI injector fouling.
Journal Article

Gasoline Direct Injector Deposits: Impacts of Fouling Mechanism on Composition and Performance

2022-03-29
2022-01-0488
Injector performance in gasoline Direct-Injection Spark-Ignition (DISI) engines is a key focus in the automotive industry as the vehicle parc transitions from Port Fuel Injected (PFI) to DISI engine technology. DISI injector deposits, which may impact the fuel delivery process in the engine, sometimes accumulate over longer time periods and greater vehicle mileages than traditional combustion chamber deposits (CCD). These higher mileages and longer timeframes make the evaluation of these deposits in a laboratory setting more challenging due to the extended test durations necessary to achieve representative in-use levels of fouling. The need to generate injector tip deposits for research purposes begs the questions, can an artificial fouling agent to speed deposit accumulation be used, and does this result in deposits similar to those formed naturally by market fuels?
Technical Paper

Predicting the Combustion Behavior in a Small-Bore Diesel Engine

2021-04-06
2021-01-0508
Accurate modeling of the characteristics of diesel-engine combustion leads to more efficient design. Accurate modeling in turn depends on correctly capturing spray dynamics, turbulence, and fuel chemistry. This work presents a computational fluid dynamics (CFD) investigation of a well characterized small-bore direct injection diesel engine at Sandia National Laboratories’ Combustion Research Facility. The engine has been studied for two piston-bowls geometries and various injection timings. Simulation of these conditions test the predictive capabilities of our approach to diesel engine modeling using Ansys Forte. An experimental database covering a wide range of operating conditions is provided by the Engine Combustion Network for this engine, which is used to validate our modeling approach. Automatic and solution-adaptive meshing is used, and the recommended settings are discussed.
Technical Paper

Numerical Modeling of Spray Formation under Flash-boiling Conditions

2020-04-14
2020-01-0328
Flash boiling occurs in sprays when the ambient gas pressure is lower than the saturation pressure of the injected fuel. In the present work, a numerical study was conducted to investigate solid-cone spray behaviors under various flash-boiling conditions. A new spray cone angle correlation that is a function of injection parameters was developed and used for spray initialization at the nozzle exit to capture plume interactions and the global spray shape. The spray-breakup regime control was adjusted to enable catastrophic droplet breakup, characterized by Rayleigh-Taylor (RT) breakup, near the nozzle exit. The model was validated against experimental spray data from five different injectors, including both multi-hole and single-hole injectors, with injection pressure varying from 100 to 200 bar.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

Large-Eddy Simulation and Analysis of Turbulent Flows in a Motored Spark-Ignition Engine

2018-04-03
2018-01-0202
Advanced research in Spark-ignition (SI) engines has been focused on dilute-combustion concepts. For example, exhaust-gas recirculation is used to lower both fuel consumption and pollutant emissions while maintaining or enhancing engine performance, durability and reliability. These advancements achieve higher engine efficiency but may deteriorate combustion stability. One symptom of instability is a large cycle-to-cycle variation (CCV) in the in-cylinder flow and combustion metrics. Large-eddy simulation (LES) is a computational fluid dynamics (CFD) method that may be used to quantify CCV through numerical prediction of the turbulent flow and combustion processes in the engine over many engine cycles. In this study, we focus on evaluating the capability of LES to predict the in-cylinder flows and gas exchange processes in a motored SI engine installed with a transparent combustion chamber (TCC), comparing with recently published data.
Technical Paper

Experimental and Numerical Studies of Bowl Geometry Impacts on Thermal Efficiency in a Light-Duty Diesel Engine

2018-04-03
2018-01-0228
In light- and medium-duty diesel engines, piston bowl shape influences thermal efficiency, either due to changes in wall heat loss or to changes in the heat release rate. The relative contributions of these two factors are not clearly described in the literature. In this work, two production piston bowls are adapted for use in a single cylinder research engine: a conventional, re-entrant piston, and a stepped-lip piston. An injection timing sweep is performed at constant load with each piston, and heat release analyses provide information about thermal efficiency, wall heat loss, and the degree of constant volume combustion. Zero-dimensional thermodynamic simulations provide further insight and support for the experimental results. The effect of bowl geometry on wall heat loss depends on injection timing, but changes in wall heat loss cannot explain changes in efficiency.
Technical Paper

CFD Modelling of the Effects of Exhaust Gas Recirculation (EGR) and Injection Timing on Diesel Combustion and Emissions

2017-03-28
2017-01-0574
Emissions from Diesel engines have been a major concern for many years, particularly with regards to the impact of NOx and particulate matter on human health. Exhaust gas re-circulation (EGR) is a widely used method in diesel engines for controlling NOx production. While EGR rates can be varied to ensure engine performance and reduce NOx emissions, EGR also influences the ignition delay, reduces the peak combustion temperature and increases particulate emissions. Moreover, the injection timing directly affects NOx and particulate emissions under the broad and highly variable operating conditions. An effective CFD-based design tool for diesel engines must therefore include robust and accurate predictive capabilities for combustion and pollutant formation, to address the complex design tradeoffs. The objective of the present study is to evaluate CFD modeling of diesel engine combustion and emissions for various combinations of EGR rates and injection timings.
Technical Paper

Evaluation and Validation of Large-Eddy-Simulation (LES) for Gas Jet and Sprays

2017-03-28
2017-01-0844
Large-eddy simulation (LES) is a useful approach for the simulation of turbulent flow and combustion processes in internal combustion engines. This study employs the ANSYS Forte CFD package and explores several key and fundamental components of LES, namely, the subgrid-scale (SGS) turbulence models, the numerical schemes used to discretize the transport equations, and the computational mesh. The SGS turbulence models considered include the classic Smagorinsky model and a dynamic structure model. Two numerical schemes for momentum convection, quasi-second-order upwind (QSOU) and central difference (CD), were evaluated. The effects of different computational mesh sizes controlled by both fixed mesh refinement and a solution-adaptive mesh-refinement approach were studied and compared. The LES models are evaluated and validated against several flow configurations that are critical to engine flows, in particular, to fuel injection processes.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

CFD Modeling of Spark Ignited Gasoline Engines- Part 1: Modeling the Engine under Motored and Premixed-Charge Combustion Mode

2016-04-05
2016-01-0591
One of the best tools to explore complicated in-cylinder physics is computational fluid dynamics (CFD). In order to assess the accuracy and reliability of the CFD simulations, it is critical to perform validation studies over different engine operating conditions. Simulation-based design of SI engines requires predictive capabilities, where results do not need to be tuned for each operating condition. This requires the models adopted to simulate their respective engine physics to be reliable under a broad range of conditions. A detailed set of experimental data was obtained to validate the CFD predictions of SI engine combustion.
Technical Paper

CFD Modeling of Spark Ignited Gasoline Engines- Part 2: Modeling the Engine in Direct Injection Mode along with Spray Validation

2016-04-05
2016-01-0579
Gasoline Direct Injection (GDI) is a key technology in the automotive industry for improving fuel economy and performance of gasoline internal combustion engines. GDI engine performance and emission characteristics are mainly determined by the complex interaction of in-cylinder flow, mixture formation and subsequent combustion processes. In a GDI engine, mixture formation depends on spray characteristics. Spray evolution and mixture formation is critical to GDI engine operation. In this work, a multi-component surrogate fuel blend was used to represent the chemical and physical properties of the gasoline employed in the experimental engine tests. Multi-component spray models were also validated in this study against experimental spray injection measurements in a chamber. The spray-chamber data include spray-penetration lengths, transient spray velocities and droplet Sauter mean diameter (SMD) at different axial and radial distances from the spray tip, obtained using a PDPA system.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

2015-09-06
2015-24-2518
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
X