Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Corrosion Resistance of Aluminum-Transition-Steel Joints for Automobiles

1993-10-01
932353
Transition materials consisting of steel clad aluminum have been used to join aluminum and steel. This technique allows joining by resistance spot welding since the clad transition material allows the actual transition from one metal to the other to occur at the clad bond interface. Welding studies show that in the recommended range of weld parameters, high strength joints are produced. A wide range of corrosion tests have been used to determine the durability of these joints in automotive environments. Results show that the use of transition material in joining aluminum to steel or EG steel eliminates galvanic corrosion.
Technical Paper

Applications of Clad Metals in Brazed Heat Exchangers

1993-03-01
930150
Design, fabricability, thermal, mechanical, physical and durability properties are all important to the successful application of materials systems to heat exchangers. In recent years, use of clad metals for furnace brazing of heat exchangers has increased significantly. These brazing materials have proven to be cost effective and reliable and the properties of the materials can be tailored to the heat exchanging application. The primary materials used in these applications range from copper clad steel to copper clad stainless steel. Selection of the component metals determines the properties of the materials system and therefore provides the properties desired in the heat exchanger. This paper discusses the process used to fabricate copper clad self brazing material and for brazing heat exchangers. Factors important in the selection of a particular materials systems are described and data is provided on the properties of these materials in heat exchangers.
Technical Paper

Transition Materials for Automotive Applications

1993-03-01
930707
Transition materials which are used to join dissimilar metals such as steel and aluminum on automobiles are described in this paper. The problems associated with conventional methods of joining these two metals include galvanic corrosion, brittle welds, reduced mechanical properties and reduced design flexibility. These problems are solved through the use of clad transition materials at the joints. Transition materials are fabricated by roll bonding dissimilar metals to form the clad materials and subsequently forming the materials to the desired configurations. The clad material allows the actual transition from one metal to the other to occur at the clad bond interface and thus only similar metal joints exist in the assembly. Welding studies describe the high strength and ductility of steel to aluminum joints through the use of steel clad aluminum transition materials.
Technical Paper

Joining Dissimilar Metals With Transition Materials

1976-02-01
760714
Galvanic corrosion and mechanical properties are major design considerations for bimetallic assemblies. Galvanic corrosion can lead to rapid degradation while welding of dissimilar metals such as steel and aluminum can lead to reduced structural stability. This paper describes a new concept in joining dissimilar metals involving the use of transition materials. The clad transition materials is composed of the dissimilar metals to be joined and effectively reduces the corrosion and mechanical problems associated with the system. Results of galvanic corrosion field tests and welding studies for transition materials are presented and several examples of automotive applications are cited.
Technical Paper

Corrosion-Resistant, High-Strength Clad Metal System for Hydraulic Brake Line Tubing

1972-02-01
720290
A new clad metal system has been developed as a material for hydraulic brake line tubing. The material consists of a 1008 LCS/304 SS/1008 LCS composite in the ratio 45%/10%/45%. Laboratory experimental tests, accelerated life tests, and field tests were performed on brake tubing formed from this material. The results show that the brazed and ternecoat low-carbon steel/stainless steel/low-carbon steel tubing has excellent corrosion resistance and high mechanical strength. The results are compared with those obtained with conventional brazed and ternecoat LCS brake tubing.
X