Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Influence of Object Properties on Reaching and Grasping Tasks

2008-06-17
2008-01-1905
This paper investigates how reaching and grasping are affected by various object properties and conditions. While previous studies have examined the effect of object attributes such as size, shape, and distance from the subject, there is a need for quantitative models of finger motions. To accomplish this, the experiment was performed with six subjects where the 3D-coordinates of the finger joints and the wrist of one hand were recorded during reaching and grasping tasks. Finger joint angles at final posture were found to depend on both object size and orientation while wrist postures were changed primarily depending on object orientation. Also, each object orientation caused alteration in relative object location with respect to the hand at final posture. In addition, analysis of temporal variables revealed that it took from 1.06 to 1.30 seconds depending on the object distance to start reaching and complete grasping of the object.
Technical Paper

Dynamic Hand Space Envelope during Reaching and Grasping

2008-06-17
2008-01-1918
The objective of this paper is to investigate the dynamic space envelope during reaching and grasping tasks. Some amount of space is required for the hand and arm to move without interference in reach-to-grasp tasks. The required space (‘dynamic space envelope’) has not been examined in spite of its importance. In this paper, we tested the hypothesis that the dynamic space envelope is a function of object size, hand size, grip type and distance. Six subjects (5 males, 1 female) participated in an experiment, in which they reached for and grasped three differently sized cylindrical objects (D: 26 mm, 60 mm, 114 mm) placed 40 cm in front of the subjects. Twenty-three markers were attached to the dorsal side of the hand and a 3-D motion capture system recorded the positions of the markers during reaching and grasping. The total distance from start to end positions is evenly divided into 10 ranges, and the areas of the required spaces were calculated for each range.
Technical Paper

Examination of a Collision Detection Algorithm for Predicting Grip Posture of Small to Large Cylindrical Handles

2006-07-04
2006-01-2328
A 3-dimensional kinematic model for predicting grip posture was developed. The finger joints are all rotated at a constant rate until contact is detected between the fingers and the work object. By comparing the model’s predicted hand postures with experimental data, it was shown that the model gave reasonable predictions (R2=0.72). The model predicts MCP (Metacarpophalangeal) and PIP (Proximal Interphalangeal) joint angles better than it predicts DIP (Distal Interphalangeal) joint angles. A sensitivity study using this model was performed. The hand length, hand breadth, object size and skin deformation level were changed and the effects of these factors on hand posture was examined. The hand length, hand breadth and skin deformation level do not seem to affect hand posture much. But the change in object size affects hand posture much more than other factors.
Technical Paper

Crashworthiness Analysis of Field Investigation of Business Aircraft Accidents

1979-02-01
790587
Business and executive aviation represent a combined total of over 40% of the general aviation fleet, but (1977) accounted for only 8.37% of all general aviation accidents recorded. During the period 1964-1977 some 7,351 aircraft engaged in business flying, and 883 in corporate/executive operations, were involved in accidents reported by the NTSB. These accidents were reviewed utilizing the University of Michigan Computerized Accident Files to provide an overall view of the incidence and nature of business/executive aircraft accidents relative to occupant crash injuries. In addition more detailed case studies of selected accidents investigated including a Lear Jet 25B, Cessna 421, Beech Volpar Model 18, and Ted Smith Aerostar 601, are provided to illustrate specific types of crashworthiness, occupant protection, or post-crash emergency egress findings applicable to business/executive operations. Post-crash fire was reported in 29 cases (16.3%) during the 3-year period (1975-1977).
X