Refine Your Search

Topic

Search Results

Book

Honda R&D Technical Review October 2020

2020-12-28
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for the October 2020 issue with 161 pages containing 17 papers focusing on the following latest topics: Development of High-efficiency CVT for 2020 Model Year CITY Modeling and Utilizing Expert's Knowledge, Experience, and Thinking in Automobile Development Material Database for Efficient Development Using Materials Informatics Traversability Analysis for Mobile Robot Navigation in Rough Terrain
Book

An Introduction to Aircraft Thermal Management

2020-04-14
Aircraft Thermal Management (ATM)focuses on how to manage heat in an aircraft to meet the temperature requirements for passengers and vehicle. This primarily involves removing heat and protecting equipment, systems, and structure from heat sources that could raise their temperature beyond design limits. Crew and passengers must be neither too hot nor too cold during airplane operations. Thus, maintaining thermal comport is critically important, and not a trivial operation. Written by Mark F.
Book

Honda R&D Technical Review October 2019

2019-10-01
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for October 2019 issue with 103 pages containing 11 papers focusing on the following latest topics: Application of Modular Design Technology to Consumer-use General Purpose Engine Prediction Technology for Thermal Mechanical Fatigue Strength of Cylinder Head Technology to Boost CVT Fuel Efficiency through Series Connection of Mechanical and Electric Oil Pumps
Book

Gas Turbine Blade Cooling

2018-12-10
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure.
Book

Diagnostics and Prognostics of Aerospace Engines

2018-11-28
The propulsion system is arguably the most critical part of the aircraft; it certainly is the single most expensive component of the vehicle. Ensuring that engines operate reliably without major maintenance issues is an important goal for all operators, military or commercial. Engine health management (EHM) is a critical piece of this puzzle and has been a part of the engine maintenance for more than five decades. In fact, systematic condition monitoring was introduced for engines before it was applied to other systems on the aircraft. Diagnostics and Prognostics of Aerospace Engines is a collection of technical papers from the archives of SAE International, which introduces the reader to a brief history of EHM, presents some examples of EHM functions, and outlines important future trends.
Book

9th AVL International Commercial Powertrain Conference (2017)

2017-05-21
Organized in cooperation with SAE International, AVL’s International Commercial Powertrain Conference- ICPC, happens every two years. It is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. This event offers a unique opportunity for engineers to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. In 2017, the 9th ICPC focused on alternative powertrain technologies and innovations improving operating efficiency. These proceedings focus on: • Future challenges for engines and emissions • Smart Technologies Changing Farming • Cyber Physical Systems in Agriculture Business • OEM View of the Future of the Construction Machinery Industry • Powertrain Developments • CO2 Reduction • CVT Transmission Platform Technology • Autonomous and Connected Trucks
Book

Automotive 48-volt Technology

2016-04-15
The introduction of 48-volt technology enables traditionally parasitic applications that run off the engine to be replaced with electrically driven systems, resulting in improvements in performance and efficiency. In the first of a series of reports produced jointly by ABOUT Automotive and SAE International, this comprehensive Executive Report analyses major engineering challenges facing the industry, and the solution strategies key players are beginning to adopt.
Book

Honda R&D Technical Review April 2016

2016-04-01
Honda's April 2016 R&D Technical Review features cutting-edge developments and new ways of solving engineering problems from Honda's worldwide R&D teams. This edition brings 23 technical papers and provides featured topics that include: • Development of New Fuel Cell Vehicle CLARITY FUEL CELL • Development of RC213V-S • Introduction of Heat Exchanger Production Technique for Stirling Engine Using Additive Manufacturing
Book

Internal Combustion Engine Handbook, 2nd English Edition

2016-03-07
More than 120 authors from science and industry have documented this essential resource for students, practitioners, and professionals. Comprehensively covering the development of the internal combustion engine (ICE), the information presented captures expert knowledge and serves as an essential resource that illustrates the latest level of knowledge about engine development. Particular attention is paid toward the most up-to-date theory and practice addressing thermodynamic principles, engine components, fuels, and emissions. Details and data cover classification and characteristics of reciprocating engines, along with fundamentals about diesel and spark ignition internal combustion engines, including insightful perspectives about the history, components, and complexities of the present-day and future IC engines.
Book

Aircraft Thermal Management

2016-03-02
This set is comprised of two titles, Aircraft Thermal Management: Systems Architectures and Aircraft Thermal Management: Integrated Energy Systems Analysis both edited by Mark Ahlers.
Book

Aircraft Thermal Management: Systems Architectures

2016-03-02
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft.
Book

Aircraft Thermal Management: Integrated Energy Systems Analysis

2016-03-02
The simultaneous operation of all systems generating, moving, or removing heat on an aircraft is simulated using integrated analysis which is called Integrated Energy System Analysis (IESA) for this book. Its purpose is to understand, optimize, and validate more efficient system architectures for removing or harvesting the increasing amounts of waste heat generated in commercial and military aircraft. In the commercial aircraft industry IESA is driven by the desire to minimize airplane operating costs associated with increased system weight, power consumption, drag, and lost revenue as cargo space is devoted to expanded cooling systems. In military aircraft thermal IESA is also considered to be a key enabler for the successful implementation of the next generation jet fighter weapons systems and countermeasures. This book contains a selection of papers relevant to aircraft thermal management IESA published by SAE International.
Book

Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously

2016-01-01
Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously describes energy harvesting using a hybrid concentrating photovoltaic (PV) system with simultaneous thermal generation for energy storage. Several designs have been proposed to build a system that takes advantage of the entire solar spectrum through direct electric generation using concentrated light onto photovoltaics while generating thermal energy using wavelengths of light not captured by the PV cell. This title addresses the current technologies and state-of-the-art designs, as well as the methodologies, underlying physics, and engineering implications.
Book

Honda R& D Technical Review April 2015

2015-04-01
Honda's April 2015 R&D Technical Review features cutting-edge developments and new ways of solving engineering problems from Honda's worldwide R&D teams. This edition brings 17 technical papers covering: • New motorcycle design and styling • Styling design of new crossover VEZEL • Development of inverter generator w/ fuel injector engine • Development of UNI-CUB • Synthesis of facet-controlled PtNi nanoparticles and evaluation of performance in PEM fuel cell • Prediction method for vibration transmission of hydraulic engine mount • Study of human dynamic analysis relating to handling and stability fo driving
Book

Thermal Management in Automotive Applications

2015-03-30
With new and more stringent standards addressing emission reduction and fuel economy, the importance of a well-developed engine thermal management system becomes even greater. With about 30% of the fuel intake energy dissipated through the cooling system and another 30% through the exhaust system, it is to be expected that serious research has been dedicated to this field. Thermal Management in Automotive Applications, edited by Dr. T. Yomi Obidi, brings together a focused collection of SAE technical papers on the subject. It offers insights into how thermal management impacts the efficiency of engines in heavy vehicles, the effects of better coolant flow control, and the use of smart thermostat and next-generation cooling pumps. It also provides an in-depth analysis of the possible gains in optimum warm-up sequence and thermal management on a small gasoline engine.
Book

Everything Works Wonderfully

2014-07-01
EVERYTHING WORKS WONDERFULLY is a 250-page A4 softback book written to provide a structured source of guidance and reference information on Servitization and the management of physical assets for people at all levels in industry: • Senior executives considering the expansion of their businesses into the provision of Asset Management services for the products they design and manufacture; • Middle management wishing to know what needs to be done to look after the assets they are responsible for and who to approach for help; • ‘Hands-on’ engineers looking for contacts and advice on detailed tools and techniques. • Academics may also find the book useful as a source of contacts and ideas for research.
Book

Honda R&D Technical Review: April 2014

2014-04-01
Honda's April 2014 R&D Technical Review features cutting-edge developments from Honda's worldwide R&D teams. This edition brings 23 original papers on the introduction of new technologies covering motorcycle, power products, aircraft engine, among others. They cover advancements in the following areas: • Development of 7-speed dual clutch transmission SPORT HYBRID i-DCD • Research on engine control to make effective use of bioethanol-blend fuels • Optimization of driving force distribution control in all-wheel drive based on wheel rotation speed difference between front and rear • Robust optimization for windmill airfoil design under variable wind conditions
Book

Heavy-Duty Wheeled Vehicles: Design, Theory, Calculations

2014-01-27
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable.
Book

Kinetic Energy Recovery Systems for Racing Cars

2013-04-02
A kinetic energy recover system (KERS) captures the kinetic energy that results when brakes are applied to a moving vehicle. The recovered energy can be stored in a flywheel or battery and used later, to help boost acceleration. KERS helps transfer what was formerly wasted energy into useful energy. In 2009, the Federation Internationale de l’Automobile (FIA) began allowing KERS to be used in Formula One (F1) competition. Still considered experimental, this technology is undergoing development in the racing world but has yet to become mainstream for production vehicles. The Introduction of this book details the theory behind the KERS concept. It describes how kinetic energy can be recovered, and the mechanical and electric systems for storing it. Flybrid systems are highlighted since they are the most popular KERS developed thus far. The KERS of two racing vehicles are profiled: the Dyson Lola LMP1 and Audi R18 e-tron Quattro.
Book

Dynamic Analysis and Control System Design of Automatic Transmissions

2013-02-12
While the basic working principle and the mechanical construction of automatic transmissions has not changed significantly, increased requirements for performance, fuel economy, and drivability, as well as the increasing number of gears has made it more challenging to design the systems that control modern automatic transmissions. New types of transmissions—continuously variable transmissions (CVT), dual clutch transmissions (DCT), and hybrid powertrains—have presented added challenges. Gear shifting in today’s automatic transmissions is a dynamic process that involves synchronized torque transfer from one clutch to another, smooth engine speed change, engine torque management, and minimization of output torque disturbance. Dynamic analysis helps to understand gear shifting mechanics and supports creation of the best design for gear shift control systems in passenger cars, trucks, buses, and commercial vehicles.
X