Refine Your Search

Topic

Search Results

Book

Generalized Vehicle Dynamics

2022-04-26
Author Daniel E. Williams, an industry professional with more than 30 years of experience in chassis control systems from concept to launch, brings this experience and his unique approach to readers of Generalized Vehicle Dynamics. This book makes use of nomenclature and conventions not used in other texts. This combination allows the derivation of complex vehicles that roll with multiple axles, any of which can be steered, to be directly predicted by manipulation of a generalized model. Similarly the ride characteristics of such a generalized vehicle are derived. This means the vehicle dynamic behavior of these vehicles can be directly written from the results derived in this work, and there is no need to start from Newton's Second Law to create such insight. Using new and non-standard conventions allows wider applicability to complex vehicles, including autonomous vehicles. Generalized Vehicle Dynamics is divided into two main sections-ride and handling-with roll considered in both.
Book

Fundamentals of Vehicle Dynamics, Revised Edition

2021-04-29
A world-recognized expert in the science of vehicle dynamics, Dr. Thomas Gillespie has created an ideal reference book that has been used by engineers for 30 years, ranging from an introduction to the subject at the university level to a common sight on the desks of engineers throughout the world. As with the original printing, Fundamentals of Vehicle Dynamics, Revised Edition, strives to find a middle ground by balancing the need to provide detailed conceptual explanations of the engineering principles involved in the dynamics of ground vehicles with equations and example problems that clearly and concisely demonstrate how to apply such principles. A study of this book will ensure that the reader comes away with a solid foundation and is prepared to discuss the subject in detail.
Book

Liquid Rocket Engine: Thrust Chamber Parametric Modeling

2018-11-15
The great engineering achievement required to overcome most of the challenges and obstacles that prevented turning rocket design from art into science took place in Europe and the United States between the 1930s and the 1950s. With the vast majority of the engines currently in operation developed in the “pre-computer” age, there are new opportunities to update the design methodologies using technology that can now handle highly complex calculations fast. The space sector with an intense focus on efficiency is driving the need for updating, adapting or replacing the old modeling practices with new tools capable of reducing the volume of resources and the time required to complete simulations and analysis. This book presents an innovative parametric model applicable to the project of some elements of the liquid rocket thrust chamber with the level of detail and accuracy appropriate to the preliminary design phase.
Book

Honda R&D Technical Review October 2017

2017-10-01
Honda's October 2017 R&D Technical Review features cutting-edge developments and new ways of solving engineering problems. Research papers related to Honda R&D Center activities worldwide cover the work of engineering teams in automobile, motocycle, power products, aircraft engine, and other fundamental technologies. This edition brings 18 technical papers and provides featured topics that include: • Development of New 3.5 L V6 Turbocharged Gasoline Engine for New NXS • Design of Safety Factor for Slip or half-toroidal Variator by Dynamic Behavior Analysis • Technologies for Low Iron-loss in New SPORT HYBRID i-DCD Motor
Book

Advances in Electric Propulsion

2017-05-18
Aviation propulsion development continues to rely upon fossil fuels for the vast majority of commercial and military applications. Until these fuels are depleted or abandoned, burning them will continue to jeopardize air quality and provoke increased regulation. With those challenges in mind, research and development of more efficient and electric propulsion systems will expand. Fuel-cell technology is but one example that addresses such emission and resource challenges, and others, including negligible acoustic emissions and the potential to leverage current infrastructure models. For now, these technologies are consigned to smaller aircraft applications, but are expected to mature toward use in larger aircraft. Additionally, measures such as electric/conventional hybrid configurations will ultimately increase efficiencies and knowledge of electric systems while minimizing industrial costs.
Book

48-Volt Developments

2015-11-09
Development of higher-voltage electrical systems in vehicles has been slowly progressing over the past few decades. However, tightening vehicle efficiency and emissions regulations and increasing demand for onboard electrical power means that higher voltages, in the form of supplemental 48 V subsystems, may soon be nearing production as the most cost-effective way to meet regulations. The displacement of high-wattage loads to more efficient 48 V networks is expected to be the next step in the development of a new generation of mild hybrid vehicles. In addition to improved fuel economy and reduced emissions, 48 V systems could potentially save costs on new electrical features and help better address the emerging needs of future drivers. Challenges to 48 V system implementation remain, leading to discussions by experts from leading car makers and suppliers on the need for an international 48 V standard. Initial steps toward a proposed standard have already been taken.
Book

Wireless Charging Technology and The Future of Electric Transportation

2015-06-08
Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and inter-operability. Wireless Charging Technology and the Future of Electric Transportation covers the current status of wireless power transfer (WPT) technology and its potential applications to the future road and rail transportation systems. Focusing on the applications of WPT technology to electric vehicle charging and the future green transportation field, Wireless Charging Technology and the Future of Electric Transportation was written collaboratively by nine experts in the field, led by Dr. In-Soo Suh, a professor and researcher from the Korean Advanced Institute of Technology (KAIST).
Book

The Multi Material Lightweight Vehicle (MMLV) Project

2015-06-05
The desire for greater fuel efficiency and reduced emissions have accelerated a shift from traditional materials to design solutions that more closely match materials and their properties with key applications. The Multi-Material Lightweight Vehicle (MMLV) Project presents cutting edge engineering that meets future challenges in a concept vehicle with weight and life-cycle assessment savings. These results significantly contribute to achieving fuel reduction and to meeting future Corporate Average Fuel Economy (CAFÉ) regulations without compromising vehicle performance or occupant safety.
Book

Energy Harvesting/Regeneration for Electric Vehicles Land, Water & Air 2015-2025

2014-12-01
The electric vehicle industry - land, water and air - is rapidly rising to become a market of over $533 billion by 2025. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries, or to drive autonomous device. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that can stay at sea for years, gaining electricity from both wave power and sunshine. Multiple forms of energy harvesting on one vehicle are becoming more common from cars to superyachts.
Book

Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air

2014-11-01
The electric vehicle business will approach a massive $500 billion in 2025 with the traction motors segment capturing over $25 billion. Traction motors propelling land, water and air vehicles along can consist of one inboard motor or - an increasing trend - more than one near the wheels, in the wheels, in the transmission or ganged to get extra power. Complex trends in this industry are explained with this updated report, and future winning suppliers are identified alongside market forecasts. The information is especially important as hybrid vehicles may have the electric motor near the conventional engine or its exhaust, and this may mean they need to tolerate temperatures never before encountered in pure electric vehicles. Motors for highly price-sensitive markets such as electric bikes, scooters, e-rickshaws and micro EVs avoid the price hikes of neodymium and other rare earths in the magnets.
Book

Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications

2014-03-11
Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications provides an in-depth assessment of the most important technology, manufacturing, and supply chain aspects of the fast-paced world of electric motors. A joint effort that brings together the technology and product strategy experience of the P3 Group and the focused reach of SAE International, Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications lends clarity combined with solid data to those interested in understanding the fundamental factors shaping this industry in the next five years. Authored by Timothy G. Thoppil, from the P3 Group, this market study draws on extensive industry experience and is supported by surveys and interviews with industry professionals from OEMs, Tier 1 suppliers, research institutions, and universities.
Book

Analysis Techniques for Racecar Data Acquisition, Second Edition

2014-02-24
Racecar data acquisition used to be limited to well-funded teams in high-profile championships. Today, the cost of electronics has decreased dramatically, making them available to everyone. But the cost of any data acquisition system is a waste of money if the recorded data is not interpreted correctly. This book, updated from the best-selling 2008 edition, contains techniques for analyzing data recorded by any vehicle's data acquisition system. It details how to measure the performance of the vehicle and driver, what can be learned from it, and how this information can be used to advantage next time the vehicle hits the track. Such information is invaluable to racing engineers and managers, race teams, and racing data analysts in all motorsports. Whether measuring the performance of a Formula One racecar or that of a road-legal street car on the local drag strip, the dynamics of vehicles and their drivers remain the same. Identical analysis techniques apply.
Book

Solving Engineering Problems in Dynamics

2014-01-01
Solving Engineering Problems in Dynamics helps practicing engineers successfully analyze real mechanical systems by presenting comprehensive methods for analyzing the motion of engineering systems and their components. This analysis covers three basic phases: 1) composing the differential equation of motion; 2) solving the differential equation of motion; and 3) analyzing the solution. Although a formal engineering education provides the fundamental skills for completing these phases, many engineers nonetheless would benefit by gaining further insight in using these fundamentals to solve real-life engineering problems. This book thus describes in step-by-step order the methods related to each of these phases.
Book

7th AVL International Commercial Powertrain Conference Proceedings (2013)

2013-05-22
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. The conference held in 2013 focused on CO2 reduction, one of the most talked-about subjects in the mobility arena.
Book

Autonomous Vehicles for Safer Driving

2013-04-16
Self-driving cars are no longer in the realm of science fiction, thanks to the integration of numerous automotive technologies that have matured over many years. Technologies such as adaptive cruise control, forward collision warning, lane departure warning, and V2V/V2I communications are being merged into one complex system. The papers in this compendium were carefully selected to bring the reader up to date on successful demonstrations of autonomous vehicles, ongoing projects, and what the future may hold for this technology. It is divided into three sections: overview, major design and test collaborations, and a sampling of autonomous vehicle research projects. The comprehensive overview paper covers the current state of autonomous vehicle research and development as well as obstacles to overcome and a possible roadmap for major new technology developments and collaborative relationships.
Book

Kinetic Energy Recovery Systems for Racing Cars

2013-04-02
A kinetic energy recover system (KERS) captures the kinetic energy that results when brakes are applied to a moving vehicle. The recovered energy can be stored in a flywheel or battery and used later, to help boost acceleration. KERS helps transfer what was formerly wasted energy into useful energy. In 2009, the Federation Internationale de l’Automobile (FIA) began allowing KERS to be used in Formula One (F1) competition. Still considered experimental, this technology is undergoing development in the racing world but has yet to become mainstream for production vehicles. The Introduction of this book details the theory behind the KERS concept. It describes how kinetic energy can be recovered, and the mechanical and electric systems for storing it. Flybrid systems are highlighted since they are the most popular KERS developed thus far. The KERS of two racing vehicles are profiled: the Dyson Lola LMP1 and Audi R18 e-tron Quattro.
Book

Multi-Axle Vehicle Dynamics

2012-09-24
Commercial vehicles must transport an increasing volume of freight on a relatively fixed infrastructure. Some of these vehicles are highly specialized and customized to perform particular tasks. One way to increase freight hauling efficiency is to allow longer vehicles with more axles. These vehicles will have different handling properties and must be driven on existing infrastructure. Longer term, autonomous-like vehicles could be used to increase vehicle utilization. In both cases characterizations of multi-axle vehicle dynamics are required. A two-dimensional yaw plane model is used in practice to analyze handling performance of two-axle passenger cars. Commonly known as the "bicycle" model because it combines all tire forces associated with a given axle to act on the centerline of the vehicle, the yaw plane model allows lateral velocity and yaw rate degrees of freedom.
Book

Advanced Hybrid Powertrains for Commercial Vehicles

2012-08-06
This book provides a broad and comprehensive look at hybrid powertrain technologies for commercial vehicles. It begins with the fundamentals of hybrid powertrain systems, government regulations, and driving cycles, then provides design guidelines and key components of hybrid powertrains for commercial vehicles. It was written for vehicle and component engineers and developers, researchers, students, policymakers, and business executives in the commercial vehicle and transportation industries to help them understand the fundamentals of hybrid powertrain technologies and market requirements for commercial vehicles. It is useful for anyone who designs or is interested in hybrid powertrains and their key components. The term ‘commercial vehicle’ applies to everything from light delivery vehicles to class 8 long haul trucks, buses, and coaches. These vehicles are used for a wide range of duties, including transporting goods or people and infrastructure service.
Book

Tire and Vehicle Dynamics, Third Edition

2012-04-01
Encompassing the latest developments on tire mechanics, this definitive third edition combines theory, guidance, discussion and insight in one comprehensive reference. In this well-known resource, the author, leading tire model expert Hans Pacejka, explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems.
Book

Occupant Protection and Automobile Safety in the U.S. since 1900

2012-03-20
This book provides a historical review of safety features appearing on passenger cars that have been produced for sale in the U.S. from 1900 to the present. A main theme throughout is the impact the automobile has made on society, with particular emphasis on accidents and loss of life. Another theme is the technological advances that have contributed to safer driving. Even though the author details the technical details of the major safety-related components of automobiles, the book is written for anyone with an interest in the workings of motor vehicles. Topics include: events driving the implementation of specific safety features government involvement and legislative actions effects of mandated and non-mandated implementation effects of safety technologies on annual passenger deaths technical details of specific innovations development of crash protection testing standards Each of the five chapters covers a different period in the evolution of passenger cars.
X