Refine Your Search

Topic

Search Results

Video

Spotlight on Design Insight: Diagnostics and Prognostics: Telematics Deep Dive

2015-05-04
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. When automotive and aerospace manufacturers look for a material with superior lightweight and strength characteristics, they often look no further than composite materials. In the episode “Composite Materials: New Trends in Automotive Design” (10:20), an engineer from Molded Fiber Glass Research Company demonstrates how they develop and test the properties of composite materials, and an engineer at MirTEQ Incorporated discusses designing molds for an aftermarket composite part.
Video

Spotlight on Design: Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention

2015-04-16
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
Video

Career Wise for Engineering Professionals: Transforming Your Talents into the New World of Work

2013-08-19
There are many macro drivers that are creating opportunities for transportation electrification. They include the environment, dependence on foreign oil, national security, battery technology and government incentives to name a few. In light of this growing momentum consumers will have choices to where they can charge ? at home, workplace or publicly. Electrical vehicle supply equipment will drive value throughout the supply chain ? installer, building owner, automaker, suppliers, utilities and consumers. Market acceptance will occur when consumer?s needs and wants are met. To meet these needs access to products through multiple channels will be required. Presenter Manoj Karwa, Leviton Manufacturing Co. Inc.
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges

2012-06-18
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60�C) and engine speed (1200 rpm).
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Video

Hydrocarbon Fouling of SCR During PCCI Combustion

2012-06-18
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
Video

Cycle-to-Cycle Variations Based Unsteady Effects on Spray Combustion in Internal Combustion Engines by Using LES

2012-06-06
Cycle-to-cycle variations of combustion processes strongly affect the emissions, specific fuel consumption as well as work output. Especially Direct Injection Spark-Ignition (DISI) engines are very sensitive to cyclic fluctuations within the combustion chamber. Multi-cycle Large Eddy Simulation (LES) based analysis has been used for investigating unsteady effects of spray combustion processes and misfires. A realistic four-stroke DISI internal combustion engine configuration was taken under consideration. The effects of variable spray boundary conditions on spray combustion are discussed first. A qualitative analysis of the intensity of cycle-to-cycle variations of in-cylinder pressure is presented for various combinations of injection parameters and ignition points. Finally, the effect of ignition probability and analysis of misfires are pointed out. The described above processes were discussed in terms of mean and standard deviation of temperature, velocity and pressure.
Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency. Presenter Xianke Lin
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
The need for light-weighting of automotive structures has spurred on a tremendous amount of interest in and development of low cost carbon fiber composite materials and manufacturing. This presentation provides a description of the commercial carbon fiber concept compared to traditional aerospace and specialty carbon fiber products. A specific update is presented on the development and commercialization of new low cost carbon fiber based on lignin / PAN precursor technology. The second focus of the presentation is on carbon fiber composite manufacturing processes, including carbon SMC, RTM, prepregs, and thermoplastic processes. Advantages and disadvantages of these processes are discussed, especially related to low cost manufacturing. Presenter George Husman, Zoltek Companies Inc.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Video

Challenges and Requirements for High Volume Production of Electric Machines

2012-05-16
With automotive electrification, the electric machines show a tendency to share or even replace the dominant role of internal combustion engines in future vehicles. Besides the design and innovation of different electric machines to meet the needs of powertrain and drivetrain performances, high volume production becomes a challenging topic and an un-avoided requirement. Flexible line and sharing line will help the variation of production rate and volume, while the dedicated unique line contributes to large scale of E-motor production. Supplier chain from raw materials, parts to processes has to be built from ground-zero or low grade to mature stage within quality specification and time limitation. Multi function skills, cross area technologies and complex management etc are all required for E-motor manufacturer to grow up with component and equipment suppliers. Reducing cost, improving quality and guaranteeing safety are always the thematic series.
Video

The Supply of the Heavy Earth Metals and the demand for them by the Global OEM Automotive Industry

2012-05-16
There has recently been a great deal of hypothesizing and prognosticating about the security of supply of the rare earths for the non-Chinese OEM automotive industry. The pundits and industry analysts have warned of demand destruction by substitution driven by sustained high prices as well as due to supply interruptions. What has been overlooked for the most part is that the issue is not about all of the rare earths; it is just about some of them, the critical rare earths. And even in that category there are two separate issues: 1) Is there enough production of the light rare earth, neodymium, to sustain current demand and can its non-Chinese production grow to meet expected non-Chinese demand? and 2.) Is there even enough production of the heavy rare earths, dysprosium and terbium, to meet current Chinese demand and is it possible to produce dysprosium a.) Outside of China, and b.)
Video

Ionic Liquids as Novel Lubricants or Lubricant Additives

2012-05-10
For internal combustion engines and industrial machinery, it is well recognized that the most cost-effective way of reducing energy consumption and extending service life is through lubricant development. This presentation summarizes our recent R&D achievements on developing a new class of candidate lubricants or oil additives ionic liquids (ILs). Features of ILs making them attractive for lubrication include high thermal stability, low vapor pressure, non-flammability, and intrinsic high polarity. When used as neat lubricants, selected ILs demonstrated lower friction under elastohydrodynamic lubrication and less wear at boundary lubrication benchmarked against fully-formulated engine oils in our bench tests. More encouragingly, a group of non-corrosive, oil-miscible ILs has recently been developed and demonstrated multiple additive functionalities including anti-wear and friction modifier when blended into hydrocarbon base oils.
Video

CRC Fuels for Advanced Combustion Engines (FACE)

2012-05-10
This presentation focuses on the efforts Coordinating Research Council is sponsoring relating fuel properties and composition to performance in emerging advanced high efficiency, clean combustion engines. Presenter William J. Cannella, Chevron USA Inc.
Video

Reduction of CO2 Emissions using Variable Compression Ratio MCE-5 VCRi Technology - Facts & Prospects

2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
Video

Modernizing the Opposed-Piston Engine for Efficient, Clean Transportation

2012-05-10
Historically, the opposed-piston, two-stroke (OP2S) diesel engine set combined records for fuel efficiency and power density that have yet to be met by any other engine type. However, with modern emissions standards, wide-spread development of this engine for on-highway use stopped. At Achates Power, state-of-the-art analytical tools and engineering methods have produced an OP2S engine that, when compared to a leading medium-duty engine, has demonstrated a 21% fuel efficiency gain and engine-out emissions levels meeting U.S. EPA10 with conventional after-treatment. Among the presentation topics covered are thermodynamic efficiency, demonstrated engine results, cost and weight advantages, and overcoming two-stroke engine challenges. Presenter David Johnson, Achates Power Inc.
Video

Development of High-Efficiency Rotary Engines

2012-05-10
In this presentation, we will explain how the traditional Miller Cycle - which has its limitations in the traditional four-stroke, Otto Cycle engine provides new opportunities for greater fuel efficiency gains and engine downsizing when incorporated in a split-cycle combustion process. Results will also be shared from studies showing how these implementations can provide both significant drops in fuel consumption and increases in power when incorporated into some of today's most economic vehicles. Presenter Stephen Scuderi, Scuderi Group LLC
Video

The Scuderi Split-Cycle and the Miller Cycle: A Perfect Match

2012-05-10
Gasoline engines continue to suffer from significant pumping losses despite decades of effort focused on reducing throttling. Honeywell Turbo has developed a throttle with an integrated turbine/generator that generates electricity by recovering pumping work. This energy offsets power normally provided by the crank driven alternator, thereby saving fuel. It integrates well with modern electrical systems which employ smart charging and idle stop strategies. The ThrottleCharger provides fuel economy benefits up to 5% over federal test cycles and in real world conditions. Presenter Mike Guidry, Honeywell Int'l (Turbo Technologies)
X