Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Engine Icing Modeling and Simulation (Part I): Ice Crystal Accretion on Compression System Components and Modeling its Effects on Engine Performance

2011-06-13
2011-38-0025
During the past two decades the occurrence of ice accretion within commercial high bypass aircraft turbine engines under certain operating conditions has been reported. Numerous engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion such as degraded engine performance, engine roll back, compressor surge and stall, and even flameout of the combustor. As ice crystals are ingested into the engine and low pressure compression system, the air temperature increases and a portion of the ice melts allowing the ice-water mixture to stick to the metal surfaces of the engine core. The focus of this paper is on estimating the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper it was necessary to initially assume a temperature range in which engine icing would occur.
Technical Paper

Particle Trajectory and Icing Analysis of the E3 Turbofan Engine Using LEWICE3D Version 3

2011-06-13
2011-38-0048
Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E₃) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E₃ was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E₃ flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E₃ for a Mach .8 cruise condition at 11,887 meters assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20 and 100 microns.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Journal Article

Altair Lander Life Support: Design Analysis Cycles 1, 2, and 3

2009-07-12
2009-01-2477
NASA is working to develop a new lunar lander to support lunar exploration. The development process that the Altair project is using for this vehicle is unlike most others. In “Lander Design Analysis Cycle 1” (LDAC-1), a single-string, minimum functionality design concept was developed, including life support systems for different vehicle configuration concepts. The first configuration included an ascent vehicle and a habitat with integral airlocks. The second concept analyzed was a combined ascent vehicle-habitat with a detachable airlock. In LDAC-2, the Altair team took the ascent vehicle-habitat with detachable airlock and analyzed the design for the components that were the largest contributors to the risk of loss of crew (LOC). For life support, the largest drivers were related to oxygen supply and carbon dioxide control. Integrated abort options were developed at the vehicle level.
Technical Paper

Characterizing the Influence of Temperature and Vacuum Quality on the Desorption Kinetics of Commercial Adsorbents

2008-06-29
2008-01-2096
Understanding the effects of dynamic thermal and vacuum regeneration on VOC desorption kinetics is needed for the development of regenerable trace contaminant control air revitalization systems. The effects of temperature and vacuum quality on the desorption kinetics of ethanol from Carbosieve SIII were examined using 1 hour regeneration cycles. The effect of vacuum quality on ethanol desorption was studied by exposing adsorption tubes loaded with ethanol to low pressures (1.0, 0.5, 0.3, and 0.12 atm) at various thermal regeneration temperatures (160, 100, 70, and 25 °C). At 1 atm of pressure, ethanol removal was found to increase from 2% at 25 °C, to 25% at 70 °C, to 55% at 100 °C, and to 77% at 160 °C. Decreasing the atmospheric pressure from 1 to 0.1 atm for 1 hr did not significantly enhance Carbosieve SIII regeneration at ambient temperatures (25 °C). However, heating the adsorbent at low pressures enhanced its regeneration.
Technical Paper

Testbed for Determining the Filtering Capacities of COTS Adsorbents

2007-07-09
2007-01-3137
A lab-scale testbed for screening and characterizing the chemical specificity of commercial “off-the-shelf” (COTS) polymer adsorbents was built and tested. COTS polymer adsorbents are suitable candidates for future trace contaminant (TC) control technologies. Regenerable adsorbents could reduce overall TC control system mass and volume by minimizing the amounts of consumables to be resupplied and stored. However, the chemical specificity of these COTS adsorbents for non-methane volatile organic compounds (NMVOCs) (e.g., methanol, ethanol, dichloromethane, acetone, etc) commonly found in spacecraft is unknown. Furthermore, the effect of humidity on their filtering capacity is not well characterized. The testbed, composed of a humidifier, an incubator, and a gas generator, delivers NMVOC gas streams to conditioned sorbent tubes.
Technical Paper

Reduced Pressure Atmosphere Impacts on Life Support and Internal Thermal Systems

2006-07-17
2006-01-2247
Selecting the appropriate atmosphere for a spacecraft and mission is a complicated problem. NASA has previously used atmospheres from Earth normal composition and pressure to pure oxygen at low pressures. Future exploration missions will likely strike a compromise somewhere between the two, trying to balance operation impacts on EVA, safety concerns for flammability and health risks, life science and physiology questions, and other issues. Life support systems and internal thermal control systems are areas that will have to respond to changes in the atmospheric composition and pressure away from the Earth-like conditions currently used on the International Space Station. This paper examines life support and internal thermal control technologies currently in use or in development to find what impacts in design, efficiency and performance, or feasibility might be expected.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

The Automated Control and Monitoring of Advanced Life Support Systems

1996-07-01
961512
Advanced life support systems require computer controls which deliver a high degree of reliability and autonomy and meet life support criteria. Such control systems must allow crewmembers on long-term missions to perform their scientific and engineering duties while minimizing interactions with life support systems. Control systems must be the “brains” of life support systems providing air, water, edible biomass, and recycling services. They must establish and maintain life support components in an optimized manner, providing self-sufficient infrastructures independent of Earth-based resupply. The CELSS (Controlled Ecological Life Support System) Breadboard Project has implemented such a computerized component of a future mission. The Universal Networked Data Acquisition and Control Engine (UNDACE) is the software interface between humans and hardware controlling plant growth experiments.
Technical Paper

NASA's Advanced Life Support Technology Program

1994-06-01
941290
For reasons of safety as well as cost, increasingly lengthy space missions at unprecedented distances from Earth in the 21st century will require reductions in consumables and increases in the autonomy of spacecraft life support systems. Advanced life support technologies can increase mission productivity and enhance science yield by achieving reductions in the mass, volume, and power required to support human needs for long periods of time in sterile and hostile environments. Current investment in developing advanced life support systems for orbital research facilities will increase the productivity of these relatively near-term missions, while contributing to the technology base necessary for future human exploration missions.
Technical Paper

Technology Test Bed and Hydrogen Cold Flow Facilities at the Marshall Space Flight Center

1993-04-01
931435
The Technology Test Bed and Hydrogen Cold Flow facilities at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama provide unique testing capabilities for the aerospace community. Located at the Advanced Engine Test Facility (AETF), these facilities are operated and maintained by MSFC Propulsion Laboratory personnel. They provide a systems and components level testing platform for validating new technology concepts and advanced systems design and for gaining a better understanding of test article internal environments. A discussion follows of the particular capabilities of each facility to provide a range of testing options for specific test articles.
Technical Paper

Power System Monitoring and Source Control of the Space Station Freedom DC-Power System Testbed

1992-08-03
929300
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation.
Technical Paper

Traction Drive System Design Considerations for A Lunar Roving Vehicle

1970-02-01
700023
For an optimum design, the weight, energy consumption, and operational flexibility of the traction drive system for a lunar roving vehicle must be considered along with the power supply, motor, and power train. Other problems considered in this paper include: environment and motor dissipation; motor type (a-c or d-c) and commutation if d-c; motor controller (switching of large currents); delivery of torque at varying speeds; the power train; use of regenerative braking and conservation of energy; and power supply voltage variation. These problems are studied in the light of certain general system specifications, which fall into weight, performance, and environment categories. Tradeoff studies are considered for purposes of optimization in each of these areas. Special consideration is given to the controller and system design as it pertains to regenerative braking and the conservation of energy.
Technical Paper

Mathematical Modeling Via Direct Use of Vibration Data

1969-02-01
690615
The process of reducing a physical system to a mathematical representation is a prevalent task mutual to all fields of analysis. Sometimes the system of equations, or mathematical model as commonly known, will be modified on a trial and error basis to make the model respond in some predetermined fashion or react so as to match behavioral data obtained from the actual physical system. This paper presents a survey of activities to produce logically based schemes to generate mathematical models by making use of experimentally derived information. Primary attention is given to modeling of mechanical structures for purposes of dynamic analysis. Emphasis is given to current effort at Goddard and in particular to the recent studies designed to verify the practical effectiveness of a specific modeling scheme. Strengths and weaknesses of the various modeling schemes are discussed.
X