Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Development of Supercharged Two-Stroke Engine with Intake and Exhaust Valve for Hybrid System

2023-10-24
2023-01-1823
The two-stroke engine has a small displacement and high output, and therefore saves space when the engine is installed in a vehicle. Thus, the application of two-stroke engines to HEVs is a very effective means of reducing vehicle weight and securing engine space. On the other hand, the unfired element increases in the exhaust gas with a two-stroke engine because the air-fuel mixture is blown through to the exhaust system during the scavenging process inside the cylinder. Moreover, combustion becomes unstable due to the large amount of residual burnt gas in the cylinder. To solve these problems, we propose a two-stroke engine that has intake and exhaust valves that injects fuel directly into the cylinder. We describe the engine shape and the method that can provide high scavenging efficiency and stable combustion in such a two-stroke engine.
Technical Paper

Development of a Lightweight One-Piece Aluminum Casting Swingarms

2023-10-24
2023-01-1808
Fuel-efficient motorcycles are essential for energy conservation and environmental load reduction. To achieve low fuel consumption, reducing the weight of the body parts of the motorcycle is important. This study focuses on reducing the weight of the swingarms, a relatively heavy body part. However, reducing the weight of swingarms is challenging owing to the low flexibility in their shape because swingarms are conventionally made of multiple pipes and casting parts welded together. Therefore, we utilized the integral casting technology and examined a new light weight shape. However, creating a new shape manually is difficult. Thus, we examined a new shape using the shape optimization technology, which has been recently used in additive manufacturing. The shapes fabricated using this technology are generally complex and difficult to manufacture by casting. Therefore, we adjusted optimization condition with casting.
Technical Paper

Development of a Riding Simulator for Motorcycles

2018-10-30
2018-32-0031
We developed the motorcycles based on RIDEOLOGY (Ride + Ideology) concept. In the past, the “Ride” was studied by a sensory evaluation with actual driving. However, the recent progress in numerical analysis, there have been developed driving simulators. It allows more quantitative measurement in a sensory evaluation. Therefore, we also developed a riding simulator specialized for motorcycles. In order to develop such riding simulator, there are some technical challenges for motorcycles. First, we need to reproduce roll motion height of motorcycles. Compared to four-wheeled vehicles, motorcycles have a higher center of rotation. Second, we need to reproduce vehicle motion control by rider’s changing body position. A rider controls vehicle’s lean by shifting his center of gravity. Therefore, it is necessary to construct a measurement system of rider’s body position. Third, we need to improve senses of speed and reality.
Technical Paper

Effects of Port Injection Specifications on Air-Fuel Ratio and Emission Behavior under Transient Operation

2018-10-30
2018-32-0012
When an electronically controlled fuel injection device is located at downstream in intake port (hereinafter defined as downstream injection, on the other hand, upstream injection is defined as that fuel injection device is located at upstream in intake port), the possibilities of an improvement in the engine startability, increase in maximum power, and decrease in THC during warming have been reported in visualizations of the intake port. In addition, the amount of wall adhesion decreased with downstream injection in previous paper [1]. In this paper, we examine the influence on the amount of wall adhesion due to the difference in injection position on fuel transport in the intake port during transient operation and the obtained exhaust A/F and the amount of exhaust gas emitted during transient operation are evaluated.
Technical Paper

Development of the Compact and Light Wheel Forces and Moments Sensor for Motorcycles

2016-11-08
2016-32-0053
Owing to the recent developments in sensors with reduced size and weight, it is now possible to install sensors on a body of a motorcycle to monitor its behavior during running. The analysis of maneuverability and stability has been performed based on the data resulted from measurements by these sensors. The tire forces and moments is an important measurement item in maneuverability and stability studies. However, the tire forces and moments is difficult to measure directly, therefore, it is a common practice to measure the force and the moment acting on the center of the wheel. The measuring device is called a wheel forces and moments sensor, and it is widely used for cars. The development of a wheel forces and moments sensor for motorcycles has difficulty particular to motorcycles. First, motorcycles run with their bodies largely banked, which restricts positioning the sensors.
Technical Paper

Application of OSC Estimation Technology of the Catalyst to the Air-Fuel Ratio Control of the Motorcycle

2015-11-17
2015-32-0752
The regulation for emission gas of the motorcycle is rapidly being strengthened as the concern about global environment grows around the world, and manufacturers are facing the problem to reduce the toxic materials in the emission gas more. As the technology to reduce the toxic materials, it is common to install a three way catalyst (TWC) on an exhaust system and optimize the oxygen concentration at the inlet of TWC by maintaining air fuel ratio (A/F) on stoichiometric A/F with the control of fuel injection quantity. Furthermore, TWC itself is designed to maintain proper oxygen concentration by the addition of a substance with oxygen storage capacity (OSC), which is able to suppress the variation of the oxygen concentration.
Technical Paper

Development of Alternative Fuel Content Estimation Method and Apparatus

2013-10-15
2013-32-9156
Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feed-back in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition.
Technical Paper

Development of Intake Sound Control Technique for Sports-Type Motorcycles

2013-10-15
2013-32-9164
Engine sound is one of the most important factors when selecting a motorcycle from various models. Therefore, it is necessary to create an appealing sound in the rider's ears in addition to complying with noise regulations. In this paper, how we control intake sound is described through the study of a sports-type motorcycle with an inline 4 cylinder engine. To control intake sound, both intake pressure pulsations generated by the engine and acoustic transfer characteristics of the intake system are important. It is shown by unsteady-state one-dimensional computational fluid dynamics analysis that specifications of the exhaust system affect intake pressure pulsations across the valve overlap period. Therefore, to emphasize high order components of the engine revolutions in the intake sound, for example, modifying the layout of the exhaust muffler is effective.
Technical Paper

Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems

2011-11-08
2011-32-0642
In this study, the technology that can predict fatigue life for motorcycle exhaust systems is developed. To predict the fatigue life, analyzing the engine vibration, modeling the vibration characteristics of exhaust systems and evaluating the fatigue damage of welded joints are considered essential. This paper shows an integrated numerical simulation and evaluation method. Furthermore, it is also shown with the result of a component vibration test of the muffler assembly to validate the technology. The results indicate a good correlation between the numerical simulation and the test.
Technical Paper

Optimal Motorcycle Configuration with Performance Limitations

2007-10-30
2007-32-0123
Motorcycle configurations, such as CG (center of gravity) location, have come to be fixed to the current ones by trial and error since motorcycle was born. Generally motorcycles' ratio of CG height to wheelbase is relatively higher than four-wheel cars'. We have analyzed the optimal motorcycle CG location with relatively simple formulas, which we have derived to calculate the maximum acceleration with three performance limitations and calculate the maximum speed and the shortest time to run through a course. The results show that the calculated speed is significantly close to actual sport motorcycle's and that the optimal CG locations for various courses are bounded in a certain limited area which is near actual sport motorcycle's.
Technical Paper

Increasing of Seizure Durability of Shift Fork Using Surface Treatment

2005-10-12
2005-32-0020
In line with the increase in the output of motorcycle engines, there has been an increase in incidents of the seizure between shift fork and gear because of the increased thrust force. We designed a test method that uses actual shift forks to simulate actual sliding conditions, then used that test method to evaluate the feature of the shift fork sliding and the different shift fork surface treatments. The shift fork slid against the gear not as surface contact but as tilted contact. We selected the candidates from the view that the surface treatment of the shift fork contact surface to give it higher seizure resistance when in tilted contact is required. We evaluated chromium nitride thin film, diamond-like carbon thin film, molybdenum sprayed coating, and sulphonitriding, and molybdenum sprayed coating exhibited the highest seizure resistance. The conformability plays a significant role in the sliding between the shift fork and the gear.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
Technical Paper

STUDY ON THE VIBRATION OF MOTORCYCLE MUFFLER SYSTEM

2001-12-01
2001-01-1868
Motorcycle engines are operated at an extremely broad range of revolutions, from 1000 min-1 to 10000 min-1 or more. Ideally, the natural frequency of each part should never match the engine excitation frequency at any point over that entire range of revolution speeds, but practically, there are times when resonance cannot be avoided because the range is so broad, and therefore the vibration amplitude at resonance must be kept low. For this reason, it is important to grasp not only the resonance frequency but also the vibration amplitude at that point. This may be achieved by two methods, measurement and analysis. The direct measurement of vibration is generally difficult because the motorcycle muffler system has a complex shape and in addition it gets very high temperature when the engine is operating. For this reason, with the aim of being able to predict muffler vibration at the design stage, we carried out a vibration test and FEM (finite element method) analysis.
Technical Paper

Prediction of Transmission Loss for Motorcycle Muffler

1999-09-28
1999-01-3256
This paper describes the predicted results of acoustic transmission loss (T.L.) for a motorcycle muffler. First, the T.L. of a prototype muffler with one expansion chamber was obtained by measuring sound levels at the inlet and outlet ports of the muffler by speaker test. T.L. was then calculated by using a three-dimensional Finite-Element Method (FEM) for acoustic fields in the muffler. There was good coincidence between the calculated T.L. and experimentally observed data. Second, T.L. of the prototype muffler while attached to a motorcycle engine was measured. On this step, however, a similarly calculated T.L. using FEM to consider the effect of exhaust gas temperature in the muffler showed differences from the measured one. It was estimated that muffler body vibration sounds may affect the result. A dynamic analysis of the structure was carried out using FEM to obtain the eigen modes of the muffler body.
Technical Paper

Improvement of Wear Resistance of Cam Shaft and Rocker Arm at 4-Cycle Engines

1999-09-28
1999-01-3296
The rocker arm has a function to lead the cam shaft rotation to the valve operation. There are cases when damages are caused due to abnormal wear at the sliding part, causing certain problems. Authors classified the wear phenomenon, and realized a systematic analysis on the possible cause of the damage. As a result, it was revealed that the damage was of two types, and to prevent the hard wear, it is effective to apply shot peening before plating. The prototype rocker arm was test under various lubricating conditions, thus actually confirming that the occurrence of wear was largely reduced.
Technical Paper

Research on the Performance of a Waterjet Propulsor for Personal Watercrafts

1999-09-28
1999-01-3264
A waterjet propulsor has come to be used more popularly for high speed watercrafts such as personal watercrafts. The most difficult problem for designing the waterjet system is that a tradeoff is required to properly determine the best parameters for the waterjet pump and subsequently the best overall propulsion system. This paper presents the design method and performance improvement of the waterjet propulsor used for personal watercrafts. The authors have clarified the performance of the individual component in the waterjet propulsor and improved the component efficiency empirically, and established the method to estimate the thrust and power characteristics of the propulsor on board from the component test results and other design parameters, which enables the optimization of the waterjet system.
Technical Paper

Development and Progress of the Exhaust-System Device for 2-Stroke Engines

1999-09-28
1999-01-3332
Though most street-use motorcycles are now equipped with 4-stroke engines, off-road motorcycles, especially moto-cross racers, still mainly use 2-stroke engines because of their high power and light weight. 2-stroke engines for moto-cross racers require the engine characteristics of high power and excellent throttle response on a wide range of engine speeds. These characteristics immediately require an effective exhaust device to improve output performance at the middle-speed range while maintaining high power at the high-speed range. The latest 2-stroke engines maintain such performance by using an exhaust device, and also by the application of extensively improved basic elements such as the scavenging passage arrangement, exhaust timing and passage shape, etc. This paper briefly summarizes continuous efforts for the improvement of our exhaust-system device from its beginning until the present.
Technical Paper

Development of Automatic Exhaust Valve Control Device of 2 Stroke Engines

1991-11-01
911226
Recently, motocross racetrack configurations have been changing from speed-oriented layouts to rider's talented performance-oriented layouts. This has created a demand for engines that can provide both power at high speeds and torque at low speeds as well as having quick response at all speeds. The most efficient way to achieve all round power range in the 2-stroke-racing engine was to increase the area of exhaust port and to vary the exhaust chamber volume at the same rate as the increased engine revolution. The authors developed an automatic exhaust control valve device called “KIPS”. In this paper we will describe how KIPS was developed, its output characteristics, and operation. Figure I shows a 1992 model KX250 motocross racing bike equipped with the newest KIPS device (3-Way KIPS).
Technical Paper

The Development of One Liter Motorcycle Engines

1989-09-01
891800
A new 0.9-liter 4-valve-per-cylinder liquid cooled engine was developed for 1984 model motorcycles. This new engine was optimized from the standpoint of performance, durability, and weight efficiency. Semi-Flat slide carburetors, high compression ratio, relatively short stroke and large valves were employed. This engine was upgraded every other year with changes in displacement. Induction system, exhaust system, and valve train. This paper describes, from the viewpoint of the designer, the evolution of the 4-valve liquid-cooled engine from the 1984 to 1988 models. In that evolutionary process we employed: (1) semi-down draft carburetors with smooth air ducts, (2) a computer-aided intake and exhaust port design and manufacturing system. (3) individual rocker arms. (4) a cool air intake system. (5) lightweight pistons. (6) angle -controlled tightening of connecting rod bolts.
X