Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

A Systematic Approach of Improving Reliability Process through Development and Application of On-Board Diagnostics System, for Commercial Vehicle

2015-01-14
2015-26-0101
This paper describes a methodology for design and development of On-Board Diagnostic system (OBD) with an objective to improve current reliability process in order to ensure design & quality of the new system as per requirement of commercial vehicle technology. OBD is a system that detects failures which adversely affect emissions and illuminates a MIL (Malfunction Indicator Lamp) to inform the driver of a fault which may lead to increase in emissions. OBD provides standard and unrestricted access for diagnosis and repair. Below given Figure 1 shows the working principle of OBD system. The exhaust emission of a vehicle will be controlled primarily by Engine Control Unit (ECU) and Exhaust Gas After Treatment Control (EGAS CU). These two control units determine the combined operating strategies of the engine and after treatment device. Figure 1 Modern Control Architecture for OBD System in Commercial vehicle [1]
Technical Paper

Ventilation Improvement in a Non-AC Bus

2013-09-24
2013-01-2457
Ventilation is a crucial factor affecting passenger comfort in any vehicle. In a non-air-conditioned bus, ventilation caters to the dual requirement of fresh breathing air as well as providing a cooling sensation by enhanced evaporation of sweat. The higher the velocity of air around the passengers, the greater the cooling effect experienced by them. The ventilation mechanism of a non-air-conditioned bus is primarily the air flow through the windows due to relative motion between the bus and the air around it. This paper describes studies carried out to identify the right combination of open windows which would provide optimum air flow at the passenger head level plane in a bus. A bus model with 12 windows, 6 on each side is used for the study and air velocity at certain points in the head level plane, arising out of different combination of window openings is evaluated using CFD.
X