Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Vehicle Noise Control Engineering Academy - Vehicle Interior Noise Track

2024-10-14
The Vehicle Noise Control Engineering Academy covers a variety of vehicle noise control engineering principles and practices. There are two concurrent, specialty tracks (with some common sessions): Vehicle Interior Noise and Powertrain Noise. Participants should choose and register for the appropriate track they wish to attend. The Vehicle Interior Noise track focuses on understanding the characteristics of noise produced by different propulsion systems, including internal combustion, hybrid and electric powered vehicles and how these noises affect the sound quality of a vehicle’s interior.  
Training / Education

Vehicle Noise Control Engineering Academy - Powertrain Noise Track

2024-10-14
The Vehicle Noise Control Engineering Academy covers a variety of vehicle noise control engineering principles and practices. There are two concurrent, specialty tracks (with some common sessions): Powertrain Noise and Vehicle Interior Noise. Participants should choose and register for the appropriate Academy they wish to attend. The Powertrain Noise track focuses on noise and vibration control issues associated with internal combustion, hybrid and electric powered vehicles. The vehicle in this case includes passenger cars, SUVs, light trucks, off-highway vehicles, and heavy trucks.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
X