Refine Your Search

Topic

Search Results

Technical Paper

Adaptation and Engine Validation of an FTIR Exhaust Gas Analysis Method for C1-Based Potential GHG-Neutral Synthetic Fuels/Gasoline-Blends Containing Dimethyl Carbonate and Methyl Formate

2022-03-29
2022-01-0569
The European Commission has released strict emission regulations for passenger cars in the past decade in order to improve air quality in cities and limit harmful emission exposure to humans. In the near future, even stricter regulations containing more realistic/demanding driving scenarios and covering more exhaust gas components are expected to be released. Passenger cars fueled with gasoline are one contributor to unhealthy air conditions, due to the fact that gasoline engines emit harmful air pollutants. One option to minimize harmful emissions would be to utilize specifically tailored, low emission synthetic fuels or fuel blends in internal combustion engines. Methyl formate and dimethyl carbonate are two promising candidates to replace or substitute gasoline, which in previous studies have proven to significantly decrease harmful pollutants.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain

2021-09-21
2021-01-1229
To minimize the impact of global warming worldwide, net greenhouse-gas (GHG) emissions have to be reduced. The transportation sector is one main contributor to overall greenhouse gas emissions due to the fact that most of the current propulsion systems rely on fossil fuels. The gasoline engine powertrain is the most used system for passenger vehicles in the EU and worldwide. Besides emitting GHG, gasoline driven cars emit harmful pollutants, which can cause health issues for humans. Hybrid powertrains provide an available short-term solution to reduce fuel consumption and thus overall emissions. Therefore, an overview of the currently available technology and methodology of hybrid cars is provided in this paper as well as an overview of the performance of current HEV cars in real world testing. From the testing, it can be concluded that despite reducing harmful emissions, hybrid vehicles still emit pollutants and GHG when fueled with conventional gasoline.
Technical Paper

Engine Operation Strategies for the Alternative Diesel Fuel Oxymethylene Ether (OME): Evaluation Based on Injection Rate Analyzer and 0D-/1D-Simulation

2021-09-21
2021-01-1190
Polyoxymethylene dimethyl ethers (OME) are promising alternative diesel fuels with a biogenic or electricity-based production, which offer carbon neutral mobility with internal combustion engines. Among other e-fuels, they stand out because of soot-free combustion, which resolves the trade-off between nitrogen oxide (NOx) and soot emissions. Additionally, long-chain OME have a high ignitability, indicated by a cetane number (CN) greater than 70. This opens up degrees of freedom in the injection strategy and enables simplifications compared to the operation with fossil diesel. This study investigates the hydraulic behavior of two solenoid injectors with different injector geometry for heavy-duty applications on an Injection Rate Analyzer (IRA) in diesel and OME operation. For OME, both injectors show longer injection delays in all injection pressure ranges investigated, increasing with rail pressure.
Journal Article

Identification of In-Cylinder Aerosol Flow Induced Emissions due to Piston Ring Design in a DISI Single Cylinder LV Engine Using Oxygenated Synthetic Fuels

2021-04-06
2021-01-0625
In the near future, pollutant and GHG emission regulations in the transport sector will become increasingly stringent. For this reason, there are many studies in the field of internal combustion research that investigate alternative fuels, one example being oxygenated fuels. Additionally, the design of engine components needs to be optimized to improve the thresholds of clean combustion and thus reduce particulates. Simulations based on PRiME 3D® for dynamic behaviors inside the piston ring group provide a guideline for experimental investigation. Gas flows into the combustion chamber are controlled by adjusting the piston ring design. A direct comparison of regular and synthetic fuels enables to separate the emissions caused by oil and fuel. This study employed a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo).
Journal Article

Potential Analysis of a DMC/MeFo Mixture in a DISI Single and Multi-Cylinder Light Vehicle Gasoline Engine

2021-04-06
2021-01-0561
In this study a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) was used as a synthetic gasoline replacement. These synthetic fuels offer CO2-neutral mobility if the fuels are produced in a closed CO2-cycle and they reduce harmful emissions like particulates and NOX. For base potential investigations, a single-cylinder research engine (SCE) was used. An in-depth analysis of real driving cycles in a series 4-cylinder engine (4CE) confirmed the high potential for emission reduction as well as efficiency benefits. Beside the benefit of lower exhaust emissions, especially NOX and particle number (PN) emissions, some additional potential was observed in the SCE. During a start of injection (SOI) variation it could be detected that a late SOI of DMC/MeFo has less influence on combustion stability and ignitability. With this widened range for the SOI the engine application can be improved for example by catalyst heating or stratified mode.
Technical Paper

Fuel Dosing on a Diesel Oxidation Catalyst for After-Treatment System Heating on a Heavy-Duty Engine Powered by Polyoxymethylene Dimethyl Ethers

2020-09-15
2020-01-2157
Polyoxymethylene dimethyl ethers (OME) are synthetic fuels, which offer the property of sustainability because the reactants of production base on hydrogen and carbon dioxide on the one hand, and the air pollution control in consequence of a soot-free combustion in a diesel engine on the other hand. High exhaust gas recirculation (EGR) rates are a promising measure for nitrogen oxide (NOx) reduction without increasing particle emissions because of the resolved soot-NOx trade-off. However, EGR rates towards stoichiometric combustion in OME operation reveals other trade-offs such as methane and formaldehyde emissions. To avoid these, a lean mixture with a combination of EGR and exhaust after-treatment with selective catalytic reduction (SCR) is useful. The limitation of urea dosing due to the light-off temperature of SCR systems requires heating measures.
Journal Article

Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with Electrically Heated Catalyst

2020-06-30
2020-37-0017
Hybridization is a promising way to further reduce the CO2 emissions of passenger vehicles. However, high engine efficiencies and the reduction of engine load, due to torque assists by an electric motor, cause a decrease of exhaust gas temperature levels. This leads to an increased time to catalyst light-off, resulting in an overall lower efficiency of the exhaust aftertreatment system (ATS). Especially in low load driving conditions, at cold ambient temperatures and on short distance drives, the tailpipe pollutant emissions are severely impacted by these low ATS efficiency levels. To ensure lowest emissions under all driving conditions, catalyst heating methods must be used. In conventional vehicles, internal combustion engine measures (e.g. usage of a dedicated combustion mode for late combustion) can be applied. A hybrid system with an electrically heated catalyst (EHC) enables further methods such as the increase of engine load by the electric motor or electric catalyst heating.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Technical Paper

The Potential of Gasoline Fueled Pre Chamber Ignition Combined with Elevated Compression Ratio

2020-04-14
2020-01-0279
Pre-chamber ignition is a method to simultaneously increase the thermal efficiency and to meet ever more stringent emission regulations at the same time. In this study, a single cylinder research engine is equipped with a tailored pre-chamber ignition system and operated at two different compression ratios, namely 10.5 and 14.2. While most studies on gasoline pre-chamber ignition employ port fuel injection, in this work, the main fuel quantity is introduced by side direct injection into the combustion chamber to fully exploit the knock mitigation effect. Different pre-chamber design variants are evaluated considering both unfueled and gasoline-fueled operation. As for the latter, the influence of the fuel amount supplied to the pre-chamber is discussed. Due to its principle, the pre-chamber ignition system increases combustion speeds by generating enhanced in-cylinder turbulence and multiple ignition sites. This property proves to be an effective measure to mitigate knocking effects.
Technical Paper

Neat Oxymethylene Ethers: Combustion Performance and Emissions of OME2, OME3, OME4 and OME5 in a Single-Cylinder Diesel Engine

2020-04-14
2020-01-0805
Diesel engines are arguably the superior device in the ground transportation sector in terms of efficiency and reliability, but suffer from inferior emission performance due to the diffusive nature of diesel combustion. Great research efforts gradually reduced nitrogen oxide (NOX) and particulate matter (PM) emissions, but the PM-NOX trade-off remained to be a problem of major concern and was believed to be inevitable for a long time. In the process of engine development, the modification of fuel properties has lately gained great attention. In particular, the oxygenate fuel oxymethylene ether (OME) has proven potential to not only drastically reduce emissions, but possibly resolve the formerly inevitable trade-off completely.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Technical Paper

Experimental and Simulative Approaches for the Determination of Discharge Coefficients for Inlet and Exhaust Valves and Ports in Internal Combustion Engines

2017-11-27
2017-01-5022
In order to fulfill future exhaust emission regulations, the variety of subsystems of internal combustion engines is progressively investigated and optimized in detail. The present article mainly focuses on studies of the flow field and the resulting discharge coefficients of the intake and exhaust valves and ports. In particular, the valves and ports influence the required work for the gas exchange process, as well as the cylinder charge and consequently highly impact the engine’s performance. For the evaluation of discharge coefficients of a modern combustion engine, a stationary flow test bench has been set up at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM). The setup is connected to the test bench’s charge air system, allowing the adjustment and control of the system pressure, as well as the pressure difference across the particular gas exchange valve.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Journal Article

Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System

2016-11-16
2016-01-9046
In the present work the benefit of a 50 MPa gasoline direct injection system (GDI) in terms of particle number (PN) emissions as well as fuel consumption is shown on a 0.5 l single cylinder research engine in different engine operating conditions. The investigations show a strong effect of injection timing on combustion duration. As fast combustion can be helpful to reduce fuel consumption, this effect should be investigated more in detail. Subsequent analysis with the method of particle image velocimetry (PIV) at the optical configuration of this engine and three dimensional (3D) computational fluid dynamics (CFD) calculations reveal the influence of injection timing on large scale charge motion (tumble) and the level of turbulent kinetic energy. Especially with delayed injection timing, high combustion velocities can be achieved. At current series injection pressures, the particle number emissions increase at late injection timing.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

Optimization of the Mixture Formation for Combined Injection Strategies in High-Performance SI-Engines

2015-09-06
2015-24-2476
Alongside with the severe restrictions according to technical regulations of the corresponding racing series (air and/or fuel mass flow), the optimization of the mixture formation in SI-race engines is one of the most demanding challenges with respect to engine performance. Bearing in mind its impact on the ignition behavior and the following combustion, the physical processes during mixture formation play a vital role not only in respect of the engine's efficiency, fuel consumption, and exhaust gas emissions but also on engine performance. Furthermore, abnormal combustion phenomena such as engine knock may be enhanced by insufficient mixture formation. This can presumably be explained by the strong influence of the spatial distribution of the air/fuel-ratio on the inflammability of the mixture as well as the local velocity of the turbulent flame front.
Journal Article

Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications

2015-04-14
2015-01-0866
Scarce resources of fossil fuels and increasingly stringent exhaust emission legislation push towards a stronger focus to alternative fuels. Natural gas is considered a promising solution for small engines and passenger cars due to its high availability and low carbon dioxide emissions. Furthermore, natural gas indicates great potential of increased engine efficiency at lean-burn operation. However, the ignition of these lean air/fuel mixtures leads to new challenges, which can be met by fuel scavenged prechambers. At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen an air cooled natural gas engine with a single cylinder displacement volume of 0.5 L is equipped with a methane scavenged prechamber for investigations of the combustion process under real engine conditions. The main combustion chamber is supplied with a lean premixed air/fuel mixture.
Technical Paper

Cetane Number Determination by Advanced Fuel Ignition Delay Analysis in a New Constant Volume Combustion Chamber

2015-04-14
2015-01-0798
A new constant volume combustion chamber (CVCC) apparatus is presented that calculates the cetane number (CN) of fuels from their ignition delay by means of a primary reference fuel calibration. It offers the benefits of low fuel consumption, suitability for non-lubricating substances, accurate and fast measurements and a calibration by primary reference fuels (PRF). The injection system is derived from a modern common-rail passenger car engine. The apparatus is capable of fuel injection pressures up to 1200 bar and requires only 40 ml of the test fuel. The constant volume combustion chamber can be heated up to 1000 K and pressurized up to 50 bar. Sample selection is fully automated for independent operation and low levels of operator involvement. Capillary tubes employed in the sampling system can be heated to allow the measurement of highly viscous fuels.
Technical Paper

Turbocharging of a Two-cylinder Lean-Burn Natural Gas Engine with Uneven Firing Order

2014-04-01
2014-01-1652
At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen a drivetrain for urban and commuter traffic is under development. The concept is based on a lean-burn air-cooled two-cylinder natural gas engine which is combined with a hydraulic hybrid system. The engine is initially mechanically charged which results in an engine speed dependent torque. Turbocharging the natural gas fuelled engine derives increased engine torque especially at low engine speeds and exploits the potential of better knock resistance of natural gas compared to gasoline fuel. The paper presents a turbocharging concept for the two-cylinder engine at first. The firing order of 180/540°CA due to the crank shaft design and the lean-burn combustion are challenging restrictions to cope with. The consequences of the uneven firing order are investigated using 1D-simulation and the matching of the exhaust gas turbocharger is shown.
X