Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Conversion Performance Prediction of Thermal-Deteriorated Three-Way Catalysts: Surface Reaction Model Development Considering Platinum Group Metals and Co-Catalyst

2021-09-05
2021-24-0077
Three-way catalyst (TWC) converters can purify harmful substances, such as carbon monoxide, nitrogen oxides, and hydrocarbons, from the exhaust gases of gasoline engines. However, large amounts of these substances may be emitted before the TWC reaches its light-off temperature during cold starts, and its performance may be impaired by thermal deterioration during high-load driving. In this work, a simulation model was developed using axisuite commercial software by Exothermia S.A to predict the light-off conversion performance of Pd/CeO2-ZrO2-Al2O3 catalysts with different degrees of thermal deterioration. The model considered detailed surface reactions and the main factor of the deterioration mechanism. In the detailed reaction mechanism, adsorption, desorption, and surface reactions of each gas species at active sites of the platinum group metal (PGM) particles were considered based on the Langmuir-Hinshelwood mechanism.
Technical Paper

Modeling Three-Way Catalyst Converters During Cold Starts And Potential Improvements

2019-12-19
2019-01-2326
Three-way catalyst (TWC) converters are often used to purify toxic substances contained in exhaust emissions from gasoline engines. However, a large amount of CO, NOx and THC may be emitted before the TWC reaches its light-off temperature during a cold start. In this work, a numerical model was developed for studying the purification performance of a close-coupled TWC converter during the cold start period. The TWC model was built using axisuite, commercial software by Exothermia S.A. Model gas experiments were designed for calibrating the chemical reaction scheme and corresponding reaction rate parameters in the TWC model. The TWC model was able to simulate the purification performance of CO, NOx and THC under both lean and rich air-fuel equivalence ratios (λ) for different conditions. The light-off temperature and oxygen storage capacity (OSC) behavior were also successfully validated in the model. Vehicle tests were conducted on a chassis dynamometer to verify the TWC model.
Technical Paper

Exhaust Purification Performance Enhancement by Early Activation of Three Way Catalysts for Gasoline Engines Used in Hybrid Electric Vehicles

2019-09-09
2019-24-0148
Three-way catalyst (TWC) converters are used to remove harmful substances (e.g., carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC)) emitted from gasoline engines. However, a large amount of emissions could be emitted before the TWC reaches its light-off temperature during a cold start. For hybrid electric vehicles (HEVs) powered by gasoline engines, the emission purification performance by TWC converters unfortunately deteriorates because of mode switching from engine to battery and vice versa, which can repeatedly generate cold start conditions for the TWCs. In this study, aiming to reduce emissions from series HEVs by early activation of TWCs, numerical simulations and experiments are carried out. An HEV is tested on a chassis dynamometer in the Worldwide Light-duty Test Cycle (WLTC) mode. The upstream and downstream gas conditions of the close-coupled catalyst converter are measured.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Journal Article

Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel Engine with Cooled EGR and Pilot Injection

2013-10-15
2013-32-9022
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
Technical Paper

Identification of Factors Influencing Premixed Diesel Engine Noise and Mechanism of Noise Reduction by EGR and Supercharging

2013-04-08
2013-01-0313
To determine the engine noise reduction methods, an engine noise research was conducted experimentally with a PCCI diesel engine. The engine employed in the experiments was a supercharged, single-cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave form and the cross power spectrum of the sound pressure of the engine noise. It is well known that the maximum pressure rise rate is the main parameter related to the engine noise. The PCCI engine was operated at a 1.0 MPa/°CA maximum pressure rise rate to eliminate the effects of the maximum pressure rise rate, and parameters which had the dominant effect on engine noise and combustion noise were determined.
Journal Article

Combustion and Emissions with Bio-alcohol and Nonesterified Vegetable Oil Blend Fuels in a Small Diesel Engine

2012-10-23
2012-32-0017
Combustion and exhaust gas emissions of alcohol and vegetable oil blends including a 20% ethanol + 40% 1-butanol + 40% vegetable oil blend and a 50% 1-butanol + 50% vegetable oil blend were examined in a single cylinder, four-stroke cycle, 0.83L direct injection diesel engine, with a supercharger and a common rail fuel injection system. A 50% diesel oil + 50% vegetable oil blend and regular unblended diesel fuel were used as reference fuels. The boost pressure was kept constant at 160 kPa (absolute pressure), and the cooled low pressure loop EGR was realized by mixing with a part of the exhaust gas. Pilot injection is effective to suppress rapid combustion due to the lower ignitability of the alcohol and vegetable oil blends. The effects of reductions in the intake oxygen concentration with cooled EGR and changes in the fuel injection pressure were investigated for the blended fuels.
Technical Paper

HCCI Combustion Control by DME-Ethanol Binary Fuel and EGR

2012-09-10
2012-01-1577
The HCCI engine offers the potential of low NOx emissions combined with diesel engine like high efficiency, however HCCI operation is restricted to low engine speeds and torques constrained by narrow noise (HCCI knocking) and misfiring limits. Gasoline like fuel vaporizes and mixes with air, but the mixture may auto-ignite at the same time, leading to heavy HCCI knocking. Retarding the CA50 (the crank angle of the 50% burn) is well known as a method to slow the maximum pressure rise rate and reduce HCCI knocking. The CA50 can be controlled by the fuel composition, for example, di-methyl ether (DME), which is easily synthesized from natural gas, has strong low temperature heat release (LTHR) characteristics and ethanol generates strong LTHR inhibitor effects. The utilization of DME-ethanol binary blended fuels has the potential to broaden the HCCI engine load-speed range.
Journal Article

Dual Phase High Temperature Heat Release Combustion

2008-04-14
2008-01-0007
To allow the HCCI vehicles to enter the market in the future, it is important to investigate the combustion deviations and operational range differences between the same research octane number fuels. In this paper, eighteen kinds of two hydrocarbon blended fuels, which were composed of n-heptane and another hydrocarbon, such as iso-octane, diisobutylene, 4-methyl-1-pentene, toluene or cyclopentane, were evaluated. Those fuels were blended to have the same research octane numbers of 75, 80, 85 and 90 by changing the blending volume ratio of n-heptane and counterpart hydrocarbon. Intake air was supercharged to 155 kPa abs and its temperature was kept at 58 °C. The HCCI engine was operated at 1000 rpm. Neither hot EGR, nor any other combustion stratification system was utilized in order to investigate the purely hydrocarbon effects on HCCI combustion.
Technical Paper

Control Strategy for Urea-SCR System in Single Step Load Transition

2006-10-16
2006-01-3308
Urea-SCR system has a high NOx reduction potential in the steady-state diesel engine operation. In complicated transient operations, however, there are certain problems with the urea-SCR system in that NOx reduction performance degrades and adsorbed NH3 would be emitted. Here, optimum urea injection methods and exhaust bypass control to overcome these problems are studied. This exhaust bypass control enables NO/NOx ratio at the inlet of SCR catalyst to be decreased widely, which prevents over production of NO2 at the pre-oxidation catalyst. Steady-state and simple transient engine tests were conducted to clarify NOx reduction characteristics when optimum urea injection pattern and exhaust bypass control were applied. In simple transient test, only the engine load was rapidly changed for obtaining the fundamental knowledge concerning the effect of those techniques.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

N2O Emissions from Vehicles Equipped with Three-Way Catalysts in a Cold Climate

2002-05-06
2002-01-1717
Nitrous oxide (N2O) is a strong green house effect gas and three-way catalyst is one of the major sources. N2O is mostly emitted at temperatures during the process of light off in the catalyst and the frequency of this temperature range over total temperature range distribution affects strongly on N2O emission. The effect of cold ambient on N2O emission was analyzed based on N2O-catalyst temperature characteristics and catalyst temperature data gained by road driving test at north part of Japan in winter. As results, N2O emission may drastically increase in colder cities and winter city traffic conditions.
Technical Paper

Deterioration Effect of Three-way Catalyst on Nitrous Oxide Emission

1998-02-23
980676
To find a clue to reduction techniques for Nitrous Oxide (N2O) emission from three-way catalyst equipped vehicles, four test samples of three-way catalysts with typical noble metal compositions were fabricated by way of experiment and their N2O formation characteristics have been experimentally studied. Then, these catalyst samples were conditioned artificially by aging with real automotive exhaust gas and the N2O formation characteristics after aging has been also observed. As results, catalyst temperature zones and concentration levels of N2O formation varies greatly by the catalyst composition. In general, a catalyst with lower metal content showed lower N2O mass emission at both fresh and after aging conditions. The tendency of the increase in N2O mass emission due to the deterioration is also different among the tested catalyst samples.
Technical Paper

Optimizing Control of NOx and Smoke Emissions from DI Engine with EGR and Methanol Fumigation

1992-02-01
920468
An attempt was made to optimize NOx and particulate emissions from heavy-duty diesel powered vehicles under heavy load engine operating regions by combining EGR and methanol fumigation and the effects on exhaust emissions were experimentally studied. The results under steady states tests show that, the smoke concentration is decreased and total fuel consumption is improved according to the increase in methanol energy ratio. As NOx reduction effect of EGR does not affected by methanol fumigation, drastic NOx reduction can be thereby possible at heavy load regions with the combined use of EGR and methanol fumigation. Then, this method was applied to new Japanese 13 mode test procedure and it was recognized that the NOx mass emissions were reduced to almost one half without increase in particulate emissions. However, drastic increase in CO, HC and aldehyde emissions were observed also.
Technical Paper

Effects of EGR with a Supplemental Manifold Water Injection to Control Exhaust Emissions from Heavy-Duty Diesel Powered Vehicles

1991-02-01
910739
Combined system with EGR and Manifold water injection was developed for trial to control exhaust NOx emissions from heavy-duty diesel powered vehicles and its effects were experimentally studied under not only steady-state but also actual driving conditions including transient. From the experimental analyses under steady-state conditions, it was recognized that higher NOx reduction may be possible with this combined system compared with the use of each method alone under the same level of other pollutants. Then, several control conditions of the system were chosen and their effects to exhaust emissions were investigated under actual driving conditions, and consequently, about 50% of NOx reduction was recognized without significant increase of other pollutants by the combination of EGR at light and medium load regions and limited water injection at heavy load regions where accelerator opening is 70% or over.
Technical Paper

An EGR Control Method for Heavy-Duty Diesel Engines under Transient Operations

1990-02-01
900444
Experiments and analyses were carried out to determine the effects of EGR on NOx and other pollutants for heavy-duty direct injection diesel engines under steady state conditions. Then based on them, optimum EGR control method was examined for effective NOx reduction without causing substantial increases of other pollutants under transient conditions. A simple EGR control system was developed for trial to achieve almost the same effects of the said method. Results of experiments with this system indicated that the EGR control method was capable of substantial reduction of NOx mass emission during transient engine operations equivalent to actual driving conditions, with different pay-loads and average vehicle speeds. REDUCTION of the NOx mass emission from heavy-duty diesel powered vehicles during actual driving operations, is one of the most important demands in automobile technologies.
X