Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Combustion and Emissions Performance of Simulated Syngas/Diesel Dual Fuels in a CI Engine

2022-08-30
2022-01-1051
Small diesel engines are a common primer for micro and mini-grid systems, which can supply affordable electricity to rural and remote areas, especially in developing countries. These diesel generators have no exhaust after-treatment system thus exhaust emissions are high. This paper investigates the potential of introducing simulated synthetic gas (syngas) to diesel in a small diesel engine to explore the opportunities of widening fuel choices and reducing emissions using a 5.7kW single cylinder direct injection diesel generator engine. Three different simulated syngas blends (with varying hydrogen content) were prepared to represent the typical syngas compositions produced from downdraft gasification and were injected into the air inlet. In-cylinder pressure, ignition delay, premixed combustion, combustion stability, specific energy consumption (SEC), and gaseous and particle emissions were measured at various power settings and mixing ratios.
Technical Paper

Understanding Catalyst Overheating Protection (COP) as a Source of Post-TWC Ammonia Emissions from Petrol Vehicle

2022-08-30
2022-01-1032
TWC exposure to extreme temperature could result in irreversible damage or thermal failure. Thus, a strategy embedded in the engine control unit (ECU) called catalyst overheating protection (COP) will be activated to prevent TWC overheating. When COP is activated, the command air-fuel ratio will be enriched to cool the catalyst monolith down. Fuel enrichment has been proven a main prerequisite for ammonia formation in hot TWCs as a by-product of NOx reduction. Hence, COP events could theoretically be a source of post-catalyst ammonia from petrol vehicles, but this theory is yet to be confirmed in published literature. This paper validated this hypothesis using a self-programmed chassis-level test. The speed of the test vehicle was set to constant while the TWC temperature was raised stepwise until a COP event was activated.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Technical Paper

Particle number emissions from standard and hybrid SI passenger cars

2019-12-19
2019-01-2194
This paper presents the PN (Particle Number) and some gaseous emissions results from a group of SI (Spark Ignition) passenger cars including HEV (Hybrid Electric Vehicle), PFI (Port Fuel Injection) and GDI (Gasoline Direction Injection) vehicles. The PEMS (Portable Emission Measurement System) was used for on-board emission measurements. The vehicles were driven using the routes complying with the EU Real Driving Emissions (RDE) test procedures required in the European Commission Regulation (EU) 2016/427, i.e. starting in an urban driving mode and then continuing into a rural driving mode and ending with motorway driving mode part. The percentage of these three segments is approximately 33%, 33%, 33% respectively. The total test time was between 90 to 120 minutes. The vehicles’ driving parameters such as road speed, tailpipe exhaust temperatures and energy consumption were recorded and their correlations with emissions were investigated.
Technical Paper

Investigating the engine behavior of a hybrid vehicle and its impact on regulated emissions during on-road testing.

2019-12-19
2019-01-2199
This paper presents the emissions results and operational behavior of two hybrid vehicles over EU legislative Real Driving Emissions (RDE) and other on-road testing cycles. The behavior of one hybrid vehicle during real world driving is investigated, including analyses of air-fuel ratio and catalyst temperature changes, in order to elucidate the reasons for the emissions results seen in the other hybrid vehicle over an RDE cycle. It was observed that the catalyst cooled down over time when the hybrid vehicle SI (Spark Ignition) engine was turned off, meaning that when the engine restarted the catalyst efficiency was decreased until it was able to light-off once again. This leads to increases in the tailpipe emissions of CO, NOx and hydrocarbons after the engine restarts. In addition to this problem, the engine restarts demanded fuel enrichment, which resulted in incomplete combustion and further increases in CO and PN emissions.
Technical Paper

Real World Driving: Emissions in Highly Congested Traffic

2017-10-08
2017-01-2388
The emissions from vehicles in real world driving are of current concern, as they are often higher than on legislated test cycles and this may explain why air quality in cities has not improved in proportion to the reduction in automotive emissions. This has led to the Real Driving Emissions (RDE) legislation in Europe. RDE involves journeys of about 90km with roughly equal proportion of urban, rural and motorway driving. However, air quality exceedances occur in cities with urban congested traffic driving as the main source of the emissions that deteriorate the air quality. Thus, the emissions measured on RDE journeys may not be relevant to air quality in cities. A Temet FTIR and Horiba exhaust flow measurement system was used for the mass emissions measurements in a Euro 4 SI vehicle. A 5km urban journey on a very congested road was undertaken 29 times at various times so that different traffic congestion was encountered.
Journal Article

Investigation of Combustion and Emission Performance of Hydrogenated Vegetable Oil (HVO) Diesel

2017-10-08
2017-01-2400
Hydrogenated Vegetable Oil (HVO) diesel fuels have the potential to provide a reduced carbon footprint for diesel engines and reduce exhaust emissions. Therefore, it is a strong candidate for transport and diesel powered machines including electricity generators and other off-road machines. In this research, a waste cooking oil derived HVO diesel was investigated for its combustion and emission performance including ignition delays, size segregated particulate number emissions and gaseous emissions. The results were compared to the standard petroleum diesel. A EURO5 emission compliant three litre, direct injection, intercooled IVECO diesel engine equipped with EGR was used which has a maximum power output of 96kW. The engine was equipped with an integrated DOC and DPF aftertreatment system. Both the upstream and downstream of the aftertreatment emissions were measured. The tests were conducted at different RPM and loads at steady state conditions.
Technical Paper

Emissions from a HGV Using Used Cooking Oil as a Fuel under Real World Driving Conditions

2015-04-14
2015-01-0905
To maximize CO2 reduction, refined straight used cooking oils were used as a fuel in Heavy Goods Vehicles (HGVs) in this research. The fuel is called C2G Ultra Biofuel (C2G: Convert to Green Ltd) and is a fully renewable fuel made as a diesel replacement from processed used cooking oil, used directly in diesel engines specifically modified for this purpose. This is part of a large demonstration project involving ten 44-tonne trucks using C2G Ultra Biofuel as a fuel to partially replace standard diesel fuels. A dual fuel tank containing both diesel and C2G Ultra Biofuel and an on-board fuel blending system-Bioltec system was installed on each vehicle, which is able to heat the C2G Ultra Biofuel and automatically determine the required blending ratio of diesel and C2G Ultra Biofuel according to fuel temperature and engine load. The engine was started with diesel and then switched to C2G Ultra Biofuel under appropriate conditions.
Technical Paper

Cold Start SI Passenger Car Emissions from Real World Urban Congested Traffic

2015-04-14
2015-01-1064
The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
Journal Article

Determination of GHG Emissions, Fuel Consumption and Thermal Efficiency for Real World Urban Driving using a SI Probe Car

2014-04-01
2014-01-1615
A SI probe car, defined here as a normal commercial car equipped with GPS, in-vehicle FTIR tailpipe emission measurement and real time fuel consumption measurement systems, and temperature measurements, was used for measuring greenhouse gas emissions including CO2, N2O and CH4 under real world urban driving conditions. The vehicle used was a EURO4 emission compliant SI car. Two real world driving cycles/routes were designed and employed for the tests, which were located in a densely populated area and a busy major road representing a typical urban road network. Eight trips were conducted at morning rush hours, day time non-peak traffic periods and evening off peak time respectively. The aim is to investigate the impacts of traffic conditions such as road congestion, grade and turnings on fuel consumption, engine thermal efficiency and emissions.
Technical Paper

Diesel Cold Start into Congested Real World Traffic: Comparison of Diesel, B50, B100 for Gaseous Emissions

2013-10-14
2013-01-2528
A cold start Euro 3 1.8 litre Diesel vehicle with an oxidation catalyst was used to investigate real world exhaust emissions over a driving cycle that included urban cold start congested traffic driving conditions. The aim was to identity those aspects of cold start real world driving responsible for higher emissions than in test cycles. Higher real world emissions may contribute to the problem of air quality in urban areas, which has not improved in quality in proportion to the reduced in vehicle exhaust emissions. Diesel, B50 and B100 fuel were compared to determine if real world driving effects were worse for B50 and B100 fuels due to their lower volatility and higher viscosity. The biofuel was WRME, derived from waste rape seed cooking oil. A multifunctional additive package was added to the biofuel at 800ppm to control fuel injector deposit formation. Gaseous emissions were monitored using an on-board heated Temet FTIR exhaust emission analyzer.
Technical Paper

Diesel Cold Start into Congested Real World Traffic: Comparison of Diesel and B100 for Ozone Forming Potential

2013-04-08
2013-01-1145
EU environmental law requires 30 ozone precursor volatile organic compounds (VOCs) to be measured for urban air quality control. In this study, 28 ozone precursor VOCs were measured at a rate of 0.5 Hz by an in-vehicle FTIR emission measurement system along with other VOCs. The vehicle used was a Euro 3 emission compliant diesel van. The test vehicle was started from a cold ambient temperature soak and driven under real world urban driving conditions. Diesel and B100 (100% Biodiesel) were compared using the same repeat journeys. The VOC emissions and OFP (ozone formation potential) were investigated as a function of engine warm up and ambient temperatures during cold start. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOC were monitored and showed a cold start period to catalyst light off that was considerably longer than would occur on the NEDC (New European Driving Cycle).
Technical Paper

Examining the Influence of Road Grade on Vehicle Specific Power (VSP) and Carbon Dioxide (CO2) Emission over a Real-World Driving Cycle

2013-04-08
2013-01-1518
The Carbon Dioxide (CO₂) emission from a EURO 3 diesel van over a real-world driving cycle were investigated utilizing part of the Leeds University - Headingly Ring Road (LU-HR) driving cycle, which comprises both an urban (congested) and extra-urban (high speed) driving section. The vehicle used in this research was a 1.8-liter Ford Connect TDCi diesel van. Emissions were monitored by a Portable Emissions Measurement System (PEMS) incorporating an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system, a Horiba On Board emissions measuring System (OBS 1300) which measured the exhaust flow rate and air/fuel ratio, and a RaceLogic VBOX II differential GPS system provided geographical position, speed and acceleration data. Route topography is known to have substantial influence on vehicle emission.
Technical Paper

Real World Diesel Engine Greenhouse Gas Emissions for Diesel Fuel and B100

2013-04-08
2013-01-1514
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
Journal Article

Comparison of Gaseous Emissions for B100 and Diesel Fuels for Real World Urban and Extra Urban Driving

2012-09-10
2012-01-1674
A Euro 3 1.8-liter diesel vehicle with an oxidation catalyst was used to investigate real-world exhaust emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. Diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME. A multifunctional additive package was added at 800 ppm to control fuel injector deposit formation. Gaseous emissions were monitored using an on-board heated Temet FTIR exhaust emission analyzer, which can measure 52 species at a rate of 0.5 Hz. A Horiba on board emissions measuring system was also used (OBS 1300), which measures the exhaust mass flow rate together with air/fuel ratio.
Journal Article

Influence of Cold Start and Ambient Temperatures on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving

2010-04-12
2010-01-0477
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function of cold start and ambient temperatures. A real-world driving cycle has been developed at Leeds and referred as LU-BS, which has an urban free flow driving pattern. The test vehicle was driven on the same route by the same driver on different days with different ambient temperatures. All the journeys were started from cold. An in-vehicle FTIR emission measurement system was installed on a EURO2 emission compliance SI car for emissions measurement at a rate of 0.5 Hz. This emission measurement system was calibrated on a standard CVS measurement system and showed an excellent agreement on the CO₂ measurement with the CVS results. The N₂O and CH₄ were calibrated by calibration gas bottles.
Technical Paper

Driver Variability Influences on Real World Emissions at a Road Junction using a PEMS

2010-04-12
2010-01-1072
A Euro 2 SI (Spark Ignition) Mondeo was investigated for a fully warmed-up vehicle on a simple urban driving loop. Emissions were monitored using an on-board Horiba OBS (On-Board emission measurement System) 1300. 10 laps of a 0.6 km loop were driven by each driver and this involved 4 junctions per lap. Statistical analysis of 20 drivers was made over 27 repeat junction events for each driver. The statistical analysis of the data showed that for all drivers the CO₂, speed and throttle position were more typical Gaussian in their distribution. NOx and CO on the other hand were lognormal in their distribution. Acceleration, positive and negative throttle jerks (rate of change of throttle angle) were borderline Gaussian. HC (Hydrocarbon) emissions were not Gaussian and there was some evidence for a gamma distribution and for a lognormal distribution. Comparison of mean HC emissions between the drivers was therefore not reliable.
Technical Paper

Impact of Ambient Temperatures on VOC Emissions and OFP during Cold Start for SI Car Real World Urban Driving

2009-06-15
2009-01-1865
New EU environmental law requires 31 ozone precursor VOCs (Volatile Organic Compounds) to be measured for urban air quality control. In this study, 23 out of the 31 ozone precursor VOCs were measured at a rate of 0.5 HZ by an in-vehicle FTIR (Fourier Transform InfraRed) emission measurement system along with 15 other VOCs. The vehicle used was a EURO2 emission compliant SI car. The test vehicle was driven under real world urban driving conditions on the same route by the same driver on different days at different ambient temperatures. All the journeys were started from cold. The VOC emissions and OFP (Ozone Formation Potential) as a function of engine warm up and ambient temperatures during cold start were investigated. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOCs was monitored.
Technical Paper

Comparison of Real World Emissions in Urban Driving for Euro 1-4 Vehicles Using a PEMS

2009-04-20
2009-01-0941
An on-board emission measurement system (PEMS), the Horiba OBS 1300, was installed in Euro 1-4 SI cars of the same model to investigate the impact of vehicle technology on exhaust emissions, under urban driving conditions with a fully warmed-up catalyst. A typical urban driving loop cycle was used with no traffic loading so that driver behavior without the influence of other traffic could be investigated. The results showed that under real world driving conditions the NOx emissions exceeded the legislated values and only at cruise was the NOx emissions below the legislated value. The higher NOx emissions during real-world driving have implications for higher urban Ozone formation. With the exception of the old EURO1 vehicle, HC and CO emissions were under control for all the vehicles, as these are dominated by cold start issues, which were not included in this investigation.
Technical Paper

Investigation of Regulated and Non-Regulated Cold Start Emissions using a EURO3 SI Car as a Probe Vehicle under Real World Urban Driving Conditions

2008-10-06
2008-01-2428
Regulated and non-regulated tailpipe exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. A EURO3 emission compliant SI car was used as a probe vehicle. An urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the TWC needed approximately 200 seconds to reach full conversion efficiency. THC and NOx emissions exceeded the EURO 3 exhaust emission legislation. CO2 emissions were well above the type approval value of this type of the vehicle. Greenhouse gases (methane and nitrous oxide) and toxic hydrocarbons such as benzene were predominantly emitted during cold start period from 0 to 200 seconds of the engine start. The results had a reasonable repeatability for most of the emissions.
X