Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of Advanced Zone-Coated Three-Way Catalysts

2011-04-12
2011-01-0296
In recent years the regulations governing emissions from automobiles have been strengthened as awareness of global environmental problems has increased. Furthermore, the amount of precious metals being used has continued to decrease due to concerns over the exhaustion of natural resources and worries about the risk of fluctuations in the price of these precious metals. As a result, a high performance three-way catalyst that can satisfy the emissions regulations is now required. By applying zone-coating and carrier degradation control technology, a high performance three-way catalyst has been developed. The zone-coating technology improves the conversion performance of the catalyst through improvement of HC and NOx conversion reactions and oxygen storage capacity (OSC) reactions. The addition of an Nd surface-enriched layer strengthened the mutual interactions between the carrier and Rh.
Technical Paper

Development of All New 7-speed Automatic Transmission for RWD Vehicles

2009-04-20
2009-01-0512
JATCO developed an all new 7-speed automatic transmission (AT) for front engine rear wheel drive medium and large vehicles. This transmission features high torque capacity, downsizing, and innovative technology to realize fuel economy improvement. In addition, it offers excellent driveability and shift responsiveness for maximum driver satisfaction and pleasibility. Specifically, the new lock-up system and adaptive shift controls add value in terms of “Joy of Driving” while providing a 7% improvement in fuel economy over the 5 speed AT it replaces.
Technical Paper

Compact and Long-Stroke Multiple-Link VCR Engine Mechanism

2007-10-29
2007-01-3991
A multiple-link variable compression ratio (VCR) mechanism is suitable for a long-stroke engine by providing the following characteristics: (1) a nearly symmetric piston stroke and (2) an upper link that stays vertical around the time of the maximum combustion pressure. These two characteristics work to reduce force inputs to the piston. The maximum inertial force around top dead center is reduced by the effect of the first characteristic. The second characteristic is effective in reducing piston side thrust force and helps ease piston pin lubrication. Because of the combined effect of these characteristics, the piston skirt can be made smaller and the piston pin can be shortened. That makes it possible for the piston skirt and piston pin to move between the counterweights, resulting in a downward extension of the piston stroke. As a result, a longer-stroke engine mechanism can be achieved without making the cylinder block taller.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2002-03-04
2002-01-0732
In order to further improve the performance of NOx storage-reduction catalysts (NSR catalysts), focus was placed on their high temperature performance deterioration via sulfur poisoning and heat deterioration. The reactions between the basicity or acidity of supports and the storage element, potassium, were analyzed. It was determined that the high temperature performance of NSR catalysts is enhanced by the interaction between potassium and zirconia, which is a basic metal oxide. Also, a new zirconia-titania complex metal oxides was developed to improve high temperature performance and to promote the desorption of sulfur from the supports after aging.
Technical Paper

Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines

1995-02-01
950809
A new 3-way catalyst with NOx conversion performance for lean-burn engines has been developed. The catalyst oxidizes NOx and stores the resulting nitrate, which is then reduced by HC and CO during engine operation around the stoichiometric air/fuel ratio. Both the composition of the storage component and the particle sizes of the noble metal were optimized. In addition, a special air fuel mixture control has been developed to make the best of the NOx storage-reduction function. The present catalyst showed 90% conversion efficiency and improved fuel economy by 4% in the Japanese 10-15 mode test cycle. The efficiency remained at 60% or more after durability test.
X