Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Mixture Formation Process Analysis in Spray and Wall Impingement Spray under Evaporating Conditions for Direct injection S.I. engines

2023-09-29
2023-32-0015
In this study, the authors analyze the concentration distribution of an evaporative spray mixture with LIEF (Laser induced exciplex fluorescence) method, which is a type of optical measurement. LIEF method is one of the optical measurements for obtaining the spray concentration distribution for separating vapor/liquid phases based on the fluorescence characteristics. In this paper, a quantitative concentration distribution analysis method for wall impingement spray in heterogeneous temperature field has been proposed. Then, a series of experiments were performed in varying injection pressure and ambient density. As a result, a two-dimensional concentration distribution was obtained for the free spray and wall impingement spray.
Technical Paper

Observer-Based Torque Vector Control of a Four In-Wheel Motor-Driven Electric Vehicles Considering with Unbalanced Electric Magnetic Field

2022-03-29
2022-01-0915
The accuracy and range of chassis control for a four in-wheel motor (IWM)-driven electric vehicles (EVs), especially in observer-based EVs control for improving road handling and ride comfort, is a challenging task for the IWM-driven vehicle system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely acquire movement state and chose the reasonable observer-based control algorithm for IWM-driven EVs become a hot topic in both academia and industry. Simultaneously, uncertainty is always existing, e.g., varying road excitation, variable system parameters or nonlinear structure. Meanwhile, the coupling effects between the non-ideal IWM actuator and vehicle are ignored under the assumption of an ideal actuator.
Technical Paper

Multiple Engine Faults Detection Using Variational Mode Decomposition and GA-K-means

2022-03-29
2022-01-0616
As a critical power source, the diesel engine is widely used in various situations. Diesel engine failure may lead to serious property losses and even accidents. Fault detection can improve the safety of diesel engines and reduce economic loss. Surface vibration signal is often used in non-disassembly fault diagnosis because of its convenient measurement and stability. This paper proposed a novel method for engine fault detection based on vibration signals using variational mode decomposition (VMD), K-means, and genetic algorithm. The mode number of VMD dramatically affects the accuracy of extracting signal components. Therefore, a method based on spectral energy distribution is proposed to determine the parameter, and the quadratic penalty term is optimized according to SNR. The results show that the optimized VMD can adaptively extract the vibration signal components of the diesel engine. In the actual fault diagnosis case, it is difficult to obtain the data with labels.
Journal Article

Effect of Blended Fuel of Hydrotreated Vegetable Oil and Fatty Acid Methyl Ester on Spray and Combustion Characteristics

2022-01-09
2022-32-0073
Research on alternative fuels is necessary to reduce CO2 emissions. Hydrotreated Vegetable Oil (HVO) of light fuel physically improves spray and combustion characteristics. Fatty Acid Methyl Ester (FAME) is an oxygenated fuel and its combustion characteristics are chemically improved, although its spray characteristics such as penetration and atomization are deteriorated. The purpose of this study is to understand the effects of blending HVO, which has carbon neutral (CN) characteristics, with FAME, which also has CN characteristics, on spray and combustion characteristics, and to further improve emission such as THC and Smoke. This report presents the effect of the combination of improved spray characteristics and oxygenated fuel on emissions. Spray characteristics such as penetration, spray angle and spray volume were investigated by shadowgraph photography.
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Research on Tracking Algorithm for Forward Target-Vehicle Using Millimeter-Wave Radar

2020-04-14
2020-01-0702
In order to solve such problems that the millimeter-wave radar is of large computation, poor robustness and low precision of the target tracking algorithm, this paper presents an algorithmic framework for millimeter-wave radar tracking of target-vehicles. The target measurement information outside the millimeter- wave radar detection range is eliminated by the data plausibility judgment method based on the millimeter-wave radar detection parameters. Target clustering is made using Manhattan distance, to eliminate clutter interference and cluster multiple target measurements into one. The data association is made by use of nearest neighbor to determine the correspondence between information received measured by the radar and the real target. The vehicle is the key detection target of the vehicle millimeter-wave radar during road driving.
Technical Paper

Multiple Engine Faults Detection Based on Variational Mode Decomposition and Echo State Network

2020-04-14
2020-01-0418
As a major power source, diesel engines are being widely used in a variety of fields. However, because of complex structure, some faults which cannot be detected by direct signals would occur on engines and even lead to accidents. Among all kinds of indirect signals, vibration signal is the most common choice for faults detection without disassemble because of its convenience and stability. This paper proposed a novel approach for detecting multiple engine faults based on block vibration signals using variational mode decomposition (VMD) and echo state network (ESN). Since the quadratic penalty has a great influence on adaptable VMD that may make expected component signals cannot be extracted exactly, this paper proposed a dynamic quadratic penalty value, which will change with decomposing level. This paper selected a best dynamic quadratic penalty value by analyzing a large amount of data and results showed that this approach can decompose signals more exactly.
Technical Paper

The Experimental Investigation of the Performance and Emissions Characteristics of Direct Injection Diesel Engine by Bio-Hydro Fined Diesel Oil and Diesel Oil in Different EGR

2020-01-24
2019-32-0595
Bio-hydro fined diesel (BHD) oil is known as a second generation oil made from bio hydro finning process. Biodiesel in the first generation is made from transesterification process and it has several disadvantages such as high density and increased the viscosity that can cause operational problems because can make some deposits in the engine. To overcome this, the second generation process of biodiesel has been modified from the first generation oil. BHD is made from the waste cooking oil by using the hydro finning process without the trans-esterification process. The results of BHD oil has nearly the same with diesel oil. BHD oil has low viscosity and high oxidation stability. Therefore, BHD oil can be used in the diesel engine without making any modifications in the engine. In this study, the comparison of performance and emissions characteristics from BHD oil, waste cooking oil, and diesel oil are investigated.
Technical Paper

Improvement of Hybrid Scheme for WAVE-MTAB Model and Analytical Study of Diesel Spray Using Theory on the Spray Similarity

2019-12-19
2019-01-2324
In order to further improve the thermal efficiency of diesel engines, this report focuses on the influence of injection condition on similarity of similar spray. To accurately reproduce the diesel spray in our laboratory, the WAVE-MTAB model was developed, and improvements were made to switch between two breakup models. As a result, switching of the breakup model can be done according to the physical phenomenon, and it is considered that similar spray can be reproduced generally well when using theory on the spray similarity.
Technical Paper

Research on Dynamic Load of Belgian Event Based on Virtual Proving Ground

2019-04-02
2019-01-0170
The fatigue load spectrum of the physical proving ground is the necessary input for fatigue life analysis of vehicle parts and components. It is usually obtained by Road Load Data Acquisition (RLDA) and loads decomposition using multi-body dynamics tools. Virtual Proving Ground (VPG) methodology is gradually replacing this technical strategy. The belgian road is the typical event in durability test, in this paper, the flexible body and FTire model are applied to the vehicle multi-body dynamics model in order to improve the simulation accuracy. The result shows that all the wheel center force, shock absorber displacement and axial force acquired by VPG simulation have excellent correlation with real vehicle measured data. It is also proved that the virtual proving ground technology is a reliable and effective method to obtain the fatigue load spectrum in the early stage of development.
Technical Paper

Mechanism Analysis and Simulation Study of Automobile Millimeter Wave Radar Noise

2018-08-07
2018-01-1641
The paper analyzes the mechanism of automobile millimeter wave radar noise, this paper does not study radar noise from the angle of signal processing, but from the level of false detection and missed detection, at the same time, the noise mechanism is modeled and verified. Firstly, the purpose and significance of the research of radar vehicle noise are described, and then, we summarize and outline the macro phenomenon and the specific characteristics of the automobile millimeter wave radar noise.
Technical Paper

Stability Control of Autonomous Vehicles with Four In-Wheel Motor Drive for Severe Environments

2017-09-23
2017-01-2001
Research and development of autonomous functions for a road vehicle become increasingly active in recent years. However, the vehicle driving dynamics performance and safety are the big challenge for the development of autonomous vehicles especially in severe environments. The optimum driving dynamics can only be achieved when the traction torque on all wheels can be influenced and controlled precisely. In this study, we present a novel approach to this problem by designing an advanced torque vectoring controller for an autonomous vehicle with four direct-drive in-wheel motors to generate and control the traction torque and speed quickly and precisely, thus to improve the stability and safety of the autonomous vehicle. A four in-wheel motored autonomous vehicle equipped with Radar and camera is modelled in PanoSim software environment. Vehicle-to-Vehicle (V2V) communication is used in this software platform to avoid collision.
Technical Paper

Real-Time Estimation of Radar Cross Section for ADAS Simulation

2017-03-28
2017-01-0028
This paper proposes a Real-Time Estimation of Radar Cross Section for ADAS Simulation, aimed to enable math-based virtual development and test of ADAS. The electromagnetic scattering mechanism is firstly analyzed with targets to be typical objects in traffic. Then a geometric model is developed, in which the object surfaces are divided into multiple scattering zones corresponding to different scattering mechanism. According to different surface curvature radius and scattering mechanism, the scattering zones are approximately equivalent to plane, cylinder, sphere and so on. Using the ARD model based on an improved physical optics and diffraction theory, RCS value of a zone is estimated. Then the RCS of the object surface is obtained by vector superposition of all zones. Some typical simulation comparisons are carried out, which proves the practicability of our method.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

LiDAR Sensor Modeling for ADAS Applications under a Virtual Driving Environment

2016-09-14
2016-01-1907
LiDAR sensors have played more and more important role on Intelligent and Connected Vehicles (ICV) and Advanced Driver Assistance Systems (ADAS) .However, the development and testing of LiDAR sensors under real driving environment for ADAS applications are greatly limited by various factors, and often are impossible due to safety concerns. This paper proposed a novel functional LiDAR model under virtual driving environment to support development of LiDAR-based ADAS applications under early stage. Unlike traditional approaches on LiDAR sensor modeling, the proposed method includes both geometrical modeling approach and physical modeling approach. While geometric model mainly produces ideal scanning results based on computer graphics, the physical model further brings physical influences on top of the geometric model. The range detection is derived and optimized based on its physical detection and measurement mechanism.
Technical Paper

Physical Modeling Method on Ultrasonic Sensors for Virtual Intelligent Driving

2016-09-14
2016-01-1901
Environmental sensing and perception is one of the key technologies on intelligent driving or autonomous vehicles. As a complementary part to current radar and lidar sensors, ultrasonic sensor has become more and more popular due to its high value to the cost. Different from other sensors mainly based on propagation of electromagnetic wave, ultrasonic sensor possesses some unique features and physical characteristics that bring many merits to autonomous vehicle research, like transparent obstacles and highly reflective surfaces detection. Its low-cost property can further bring down hardware cost to foster widespread use of intelligent driving or autonomous vehicles. To accelerate the development of autonomous vehicle, this paper proposes a high fidelity ultrasonic sensor model based on its physical characteristics, including obstacle detection, distance measurement and signal attenuation.
Technical Paper

Visualization of Cavitation Inside Nozzle Hole and Injected Liquid Jet

2015-09-01
2015-01-1908
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
Technical Paper

Compressible Large-Eddy Simulation of Diesel Spray Structure using OpenFOAM

2015-09-01
2015-01-1858
The compressible Large-Eddy Simulation (LES) for the diesel spray with OpenFOAM is presented to reduce CPU time by massively parallel computing of the scalar type supercomputer (CRAY XE6) and simulate the development of the non-evaporative and the evaporative spray. The maximum computational speeds are 14 times (128 cores) and 43 times (128 cores) for of the non-evaporative spray and the spray flame with one-step reaction, respectively, compared to the one core simulation. In the spray flame simulation with the reduced reaction mechanism (29 species, 52 reactions), the maximum computational speed is 149 times (512 cores). Then LES of the non-evaporative and the evaporative spray (Spray A) are calculated. The results indicate that the spray tip penetration is well predicted, although the size of the computational domain must be set equal to that of the experiment.
Technical Paper

Sweeping Vehicle Vacuum Dust Control System Research

2015-04-14
2015-01-0503
Plenty of dust particles which are generated when a sweeping vehicle is dumping harm to workers' health. In the study, the designed vacuum dust control system could effectively capture easily raised dust particles in the air in the premise of not impacting the dumping process so as to improve the unloading work environment. Firstly, longitudinal motion trajectory model of dust particles in the dumping process is established. Based on the side collision probability model of dust particles, lateral velocity distribution of dust particles is obtained. What's more, the scope of lateral dust particles is determined. Taking into account coupling of the dust control system and the working state of the vehicle, the suction mouth is arranged at the edge on the outside of hatch cover. Centrifugal horizontal dust removal system designed in the research is fixed in the middle of the filter cover part and discharging hatch cover area.
X