Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applying DO-254 for Avionics Hardware Development and Certification

2024-11-20
This basic course introduces the intent of the DO-254 standard for commercial avionics hardware development. The content will cover many aspects of avionic hardware including, aircraft safety, systems, hardware planning, requirements, design, implementation, and testing. Participants will learn industry-best practices for real-world hardware development, common DO-254 mistakes and how to prevent them, and how to minimize risks and costs while maximizing hardware quality.
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

Exploration of Machine Learning and Neural Networks for ADAS and L4 Vehicle Perception

2024-07-18
Convolutional neural networks are the de facto method of processing camera, radar, and lidar data for use in perception in ADAS and L4 vehicles, yet their operation is a black box to many engineers. Unlike traditional rules-based approaches to coding intelligent systems, networks are trained and the internal structure created during the training process is too complex to be understood by humans, yet in operation networks are able to classify objects of interest at error rates better than rates achieved by humans viewing the same input data.
Technical Paper

Environment-Adaptive Localization based on GNSS, Odometry and LiDAR Systems

2024-07-02
2024-01-2986
In the evolving landscape of automated driving systems, the critical role of vehicle localization within the autonomous driving stack is increasingly evident. Traditional reliance on Global Navigation Satellite Systems (GNSS) proves to be inadequate, especially in urban areas where signal obstruction and multipath effects degrade accuracy. Addressing this challenge, this paper details the enhancement of a localization system for autonomous public transport vehicles, focusing on mitigating GNSS errors through the integration of a LiDAR sensor. The approach involves creating a 3D map using the factor graph-based LIO-SAM algorithm based on GNSS, vehicle odometry, IMU and LiDAR data. The algorithm is adapted to the use-case by adding a velocity factor and altitude data from a Digital Terrain model. Based on the map a state estimator is proposed, which combines high-frequency LiDAR odometry based on FAST-LIO with low-frequency absolute multiscale ICP-based LiDAR position estimation.
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

Design of an Alternative Hardware Abstraction Layer for Embedded Systems with Time-Controlled Hardware Access

2024-07-02
2024-01-2989
This paper proposes a novel approach to the design of a Hardware Abstraction Layer (HAL) specifically tailored to embedded systems, placing a significant emphasis on time-controlled hardware access. The general concept and utilization of a HAL in industrial projects are widespread, serving as a well-established method in embedded systems development. HALs enhance application software portability, simplify underlying hardware usage by abstracting its inherent complexity and reduce overall development costs through software reusability. Beyond these established advantages, this paper introduces a conceptual framework that addresses critical challenges related to debugging and mitigates input-related problems often encountered in embedded systems. This becomes particularly pertinent in the automotive context, where the intricate operational environment of embedded systems demands robust solutions. The HAL design presented in this paper mitigates these issues.
X