Refine Your Search

Topic

Search Results

Technical Paper

Development of a Control-Oriented Cylinder Air-Charge Model for Gasoline Engines with Dual Independent Cam Phasing

2022-03-29
2022-01-0414
Cylinder air-charge is one of the most important parts of the torque control in a gasoline engine, due to the necessity to keep a stoichiometric air-fuel ratio, for the three-way catalyst to work efficiently. Throttle and phasing of the camshafts are actuators that have a big effect on the cylinder air-charge, this results in a cross-coupling between the actuators. One approach to handle the cross-coupling that occurs with multiple actuators is to use model predictive control (MPC), that handles the cross-coupling through the use of models and optimization. Models that support computation of gradients and hessians are desirable for use in MPC. To support the model design experimental data of cylinder pressure, from an inline four-cylinder engine with dual independent cam phasing, supported by gas exchange simulation, the effects from variable valve timing on the cylinder air-charge are investigated during the valve overlap period.
Technical Paper

System Identification, Trajectory Optimization and MPC for Time Optimal Turbocharger Testing in Gas-Stands with Unknown Maps

2019-04-02
2019-01-0321
Turbocharger testing is a time consuming process, and as rapid-prototyping technology advances, so must other areas in the development chain. As an example, in one study a compressor map took over 34 hours to measure. In this paper, an effort to combat the main bottleneck of turbocharger testing, namely the thermal inertia, is made. When changing operating point during the measurement process, several minutes can be required before the turbocharger components reach temperature steady state. In an earlier paper, a method based on non-linear trajectory optimization was developed that significantly reduced the testing time required to produce compressor performance maps. The time was reduced by a factor of over 60, compared to waiting for the system to reach steady state with constant inputs. However, the method required a model of the turbocharger. This paper extends the method with system identification and model predictive control (MPC).
Technical Paper

Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles

2019-04-02
2019-01-0989
Exhaust aftertreatment systems are essential components in modern powertrains, needed to reach the low legislated levels of NOx and soot emissions. A well designed diesel engine exhaust aftertreatment system can have NOx conversion rates above 95%. However, to achieve high conversion the aftertreatment system must be warm. Because of this, large parts of the total NOx emissions come from cold starts where the engine has been turned off long enough for the aftertreatment system to cool down and loose its capacity to reduce NOx. It is therefore important to understand how the aftertreatment cools down when the engine in turned off. Experimental data for a catalyst cool-down process is presented and analyzed. The analysis shows that it is important to capture the spatial distribution of temperatures both in axial and radial directions. The data and analysis are used to design a catalyst thermal model that can be used for model based catalyst temperature monitoring and control.
Technical Paper

Turbocharger Impact on Diesel Electric Powertrain Performance

2018-04-03
2018-01-0965
When electrifying the powertrain, there arises an opportunity to revise the traditional turbocharging trade-off between fuel-economy and transient performance. With the help of electrification, it might be possible to make the trade-off in favor of fuel economy, since transient response can be improved by the electric machine. The paper investigates this trade-off by looking at three turbocharger selections. A conventionally dimensioned turbocharger, an efficiency optimized turbocharger with maintained flow capacity, and an efficiency optimized turbocharger with increased flow capacity. The concepts are evaluated on the following cases: stationary operation, engine tip-in performance, vehicle acceleration performance, and on road fuel economy performance. The investigation is based on a validated mean value engine model of a six cylinder inline CI engine, and on a validated driveline and vehicle model of a heavy-duty truck.
Technical Paper

Performance of Gasoline Compression Ignition (GCI) with On-Demand Reactivity Enhancement over Simulated Drive Cycles

2018-04-03
2018-01-0255
Gasoline compression ignition (GCI) combustion is a promising solution to address increasingly stringent efficiency and emissions regulations imposed on the internal combustion engine. However, the high resistance to auto-ignition of modern market gasoline makes low load compression ignition (CI) operation difficult. Accordingly, a method that enables the variation of the fuel reactivity on demand is an ideal solution to address low load stability issues. Metal engine experiments conducted on a single cylinder medium-duty research engine allowed for the investigation of this strategy. The fuels used for this study were 87 octane gasoline (primary fuel stream) and diesel fuel (reactivity enhancer). Initial tests demonstrated load extension down to idle conditions with only 20% diesel by mass, which reduced to 0% at loads above 3 bar IMEPg.
Technical Paper

Analysis and Development of Compact Models for Mass Flows through Butterfly Throttle Valves

2018-04-03
2018-01-0876
Throttles and wastegates are devices used in modern engines for accurate control of the gas flows. It is beneficial, for the control implementation, to have compact and accurate models that describe the flow behavior. The compressible isentropic restriction is a frequently used model, it is simple and reasonable accurate but it has some issues. One special issue is that it predicts that the choking occurs at too high pressure ratios, for example the isentropic model predicts choking at a pressure ratio of 0.52, while experimental data can have choking at 0.4 or even lower. In this work, experimental data is acquired from throttles tested both in a flow bench and mounted as main throttle on a turbocharged gasoline engine. To analyze the flow behavior several flow characterizations are performed at different throttle openings.
Technical Paper

Development and Usage of a Continuously Differentiable Heavy Duty Diesel Engine Model Equipped with VGT and EGR

2017-03-28
2017-01-0611
Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented.
Technical Paper

Turbo Speed Estimation Using Fixed-Point Iteration

2017-03-28
2017-01-0591
1 In modern turbocharged engines the power output is strongly connected to the turbocharger speed, through the flow characteristics of the turbocharger. Turbo speed is therefore an important state for the engine operation, but it is usually not measured or controlled directly. Still the control system must ensure that the turbo speed does not exceed its maximum allowed value to prevent damaging the turbocharger. Having access to a turbo speed signal, preferably by a cheap and reliable estimation instead of a sensor, could be beneficial for over speed protection and supervision of the turbocharger. This paper proposes a turbo speed observer that only utilizes the conditions around the compressor and a model for the compressor map. These conditions are either measured or can be more easily estimated from available sensors compared the conditions on the turbine side.
Journal Article

Calculation of Optimal Heat Release Rates under Constrained Conditions

2016-04-05
2016-01-0812
The work extends a methodology, for searching for optimal heat release profiles, by adding complex constraints on states. To find the optimum heat release profile a methodology, that uses available theory and methods, was developed that enables the use of state of the art optimal control software to find the optimum combustion trace for a model. The methodology is here extended to include constraints and the method is then applied to study how sensitive the solution is to different effects such as heat transfer, crevice flow, maximum rate of pressure rise, maximum pressure, knock and NO generation. The Gatowski single zone model is extended to a pseudo two zone model, to get an unburned zone that is used to describe the knocking and a burned zone for NO generation. A modification of the extended Zeldovich mechanism that makes it continuously differentiable, is used for NO generation.
Technical Paper

Optimal Control of a Diesel-Electric Powertrain During an Up-Shift

2016-04-05
2016-01-1237
To investigate the optimal controls of a diesel-electric powertrain during a torque controlled gearshift, a powertrain model is developed. A validated diesel-electric model is used as the power source and the transmission dynamics are described by different sets of differential equations during torque phase, synchronization phase and inertia phase of the gearshift. Using the developed model, multi-phase optimal control problems are formulated and solved. The trade-off between gearshift duration and driveline oscillations are calculated and efficient gearshift transients for a diesel-electric and pure diesel powertrain are then compared and analyzed.
Journal Article

Computing Optimal Heat Release Rates in Combustion Engines

2015-04-14
2015-01-0882
The combustion process has a high impact on the engine efficiency, and in the search for efficient engines it is of interest to study the combustion. Optimization and optimal control theory is used to compute the most efficient combustion profiles for single zone model with heat transfer and crevice effects. A model is first developed and tuned to experimental data, the model is a modification of the well known Gatowski et al.-model [1]. This model is selected since it gives a very good description of the in-cylinder pressure, and thus the produced work, and achieves this with a low computational complexity. This enables an efficient search method that can maximize the work to be developed. First, smooth combustion profiles are studied where the combustion is modeled using the Vibe function, and parametric optimization is used to search for the optimal profile.
Journal Article

Turbocharger Dynamics Influence on Optimal Control of Diesel Engine Powered Systems

2014-04-01
2014-01-0290
The importance of including turbocharger dynamics in diesel engine models are studied, especially when optimization techniques are to be used to derive the optimal controls. This is done for two applications of diesel engines where in the first application, a diesel engine in wheel loader powertrain interacts with other subsystems to perform a loading operation and engine speed is dictated by the wheel speed, while in the second application, the engine operates in a diesel-electric powertrain as a separate system and the engine speed remains a free variable. In both applications, mean value engine models of different complexities are used while the rest of system components are modeled with the aim of control study. Optimal control problems are formulated, solved, and results are analyzed for various engine loading scenarios in the two applications with and without turbocharger dynamics.
Journal Article

Scalable Component-Based Modeling for Optimizing Engines with Supercharging, E-Boost and Turbocompound Concepts

2012-04-16
2012-01-0713
Downsizing and turbocharging is a proven technology for fuel consumption reduction in vehicles. To further improve the performance, electrified components in the turbocharger arrangements have been proposed, and investigations have shown acceleration improvements, emission reductions, and further fuel conversion efficiency benefits. Simulation tools play an important role in the design process as the interplay between component selection, control strategy, system properties and constraints is very complex. Evaluations are performed with respect to BSFC map, fuel consumption in a drive cycle, acceleration performance, as well as many other aspects. A component-based engine and vehicle model is developed and evaluated to facilitate the process of assessing and optimizing the performance of e.g. engine, charging system, and electrical machine components. Considerations of the execution time and model fidelity have resulted in a choice of models in the mean value engine model family.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

Spray and Atomization Characterization of a Micro-Variable Circular-Orifice (MVCO) Fuel Injector

2011-04-12
2011-01-0679
HCCI/PCCI combustion concepts have been demonstrated for both high brake thermal efficiency and low engine-out emissions. However, these advanced combustion concepts still could not be fully utilized partially due to the limitations of conventional fixed spray angle nozzle designs for issues related to wall wetting for early injections. The micro-variable circular orifice (MVCO) fuel injector provides variable spray angles, variable orifice areas, and variable spray patterns. The MVCO provides optimized spray patterns to minimize combustion chamber surface-wetting, oil dilution and emissions. Designed with a concise structure, MVCO can significantly extend the operation maps of high efficiency early HCCI/PCCI combustion, and enable optimization of a dual-mode HCCI/PCCI and Accelerated Diffusion Combustion (ADC) over full engine operating maps. The MVCO variable spray pattern characteristics are analyzed with high speed photographing.
Journal Article

Nonlinear Input Transformation for EGR and VGT Control in Diesel Engines

2010-10-25
2010-01-2203
In diesel engines with EGR and VGT, the gas flow dynamics has significant nonlinear effects. This is shown by analyzing DC-gains in different operating points showing that these gains have large variations. To handle these nonlinear effects, a nonlinear state dependent input transformation is investigated. This input transformation is achieved through inversion of the models for EGR-flow and turbine flow. It is shown that the input transformation handles the nonlinear effects and decreases the variations in DC-gains substantially. The input transformation is combined with a new control structure that has a pumping work minimization feature and consists of PID controllers and min/max-selectors for coordinated control of EGR-fraction and oxygen/fuel ratio. The EGR flow and the exhaust manifold pressure are chosen as feedback variables in this structure. Further, the set-points for EGR-fraction and oxygen/fuel ratio are transformed to set-points for the feedback variables.
Technical Paper

Engine Test Bench Turbo Mapping

2010-04-12
2010-01-1232
A method for determining turbocharger performance on installations in an engine test bench is developed and investigated. The focus is on the mapping of compressor performance but some attention is also given to the turbine mapping. An analysis of the limits that an engine installation imposes on the reachable points in the compressor map is performed, in particular it shows what corrected flows and pressure ratios can be reached and what these limitations depend on. To be able to span over a larger region of the corrected flow a throttle before the compressor is suggested and this is also verified in the test bench. Turbocharger mapping is a time consuming process and there is a need for a systematic process that can be executed automatically. An engine and test cell control structure that can be used to automate and monitor the measurements by controlling the system to the desired operating points is also proposed.
Journal Article

Investigation of In-cylinder NOx and PM Reduction with Delphi E3 Flexible Unit Injectors on a Heavy-duty Diesel Engine

2008-06-23
2008-01-1792
In-cylinder emission controls were the focus for diesel engines for many decades before the emergence of diesel aftertreatment. Even with modern aftertreatment, control of in-cylinder processes remains a key issue for developing diesel vehicles with low tailpipe emissions. A reduction in in-cylinder emissions makes aftertreatment more effective at lower cost with superior fuel economy. This paper describes a study focused on an in-cylinder combustion control approach using a Delphi E3 flexible fuel system to achieve low engine-out NOx and PM emissions. A 2003 model year Detroit Diesel Corporation Series 60 14L heady-duty diesel engine, modified to accept the Delphi E3 unit injectors, and ultra low sulfur fuel were used throughout this study. The process of achieving premixed low temperature combustion within the limited range of parameters of the stock ECU was investigated.
Technical Paper

Thermal Management of a Four-way Catalyst System with Alternative Combustions for Achieving Future Emissions Standard

2007-09-16
2007-24-0103
Four-way catalyst system consisting of diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and lean NOx trap (LNT) with alternative combustion such as low temperature combustion (LTC) and premixed controlled compression ignition (PCCI) is one of the effective ways to achieve the US Tier 2 Bin 5 and future European emissions for light duty diesel vehicles. However, thermal responses such as substrate temperature and temperature gradient of each catalyst component in the exhaust treatment system are different under different combustion modes and operation conditions. One exhaust treatment component's performance or durability can not be sacrificed for the sake of another. In this paper, thermal management strategies for exhaust treatment component temperature and temperature gradient by controlling lean and rich conditions of low temperature combustions as well as premixed controlled combustion, EGR rate and exhaust flow are demonstrated on a Renault G9T600 engine.
Technical Paper

Unregulated Exhaust Emissions from Alternate Diesel Combustion Modes

2006-10-16
2006-01-3307
Regulated and unregulated exhaust emissions (individual hydrocarbons, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), and nitro-polynuclear aromatic hydrocarbons (NPAH)) were characterized for the following alternate diesel combustion modes: premixed charge compression ignition (PCCI), and low-temperature combustion (LTC). PCCI and LTC were studied on a PSA light-duty high-speed diesel engine. Engine-out emissions of carbonyl compounds were significantly increased for all LTC modes and for PCCI-Lean conditions as compared to diesel operation; however, PCCI-Rich produced much lower carbonyl emissions than diesel operations. For PAH compounds, emissions were found to be substantially increased over baseline diesel operation for LTC-Lean, LTC-Rich, and PCCI-Lean conditions. PCCI-Rich operation, however, gave PAH emission rates comparable to baseline diesel operation.
X