Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Sustainability of Advanced ICEs Based HEVs for Passenger Cars Fuelled with Alternative Fuels: A LCA Study in Comparison with BEV Technology

2023-08-28
2023-24-0094
A possible environmental assessment of sustainable vehicular transport is based on a comparative analysis through the LCA Life Cycle Analysis methodology of the entire vehicle’s life cycle. For this purpose, it could contribute to the choices of political decision-makers and investors in the sector of large infrastructure and industrial works. Therefore, the LCA activity is of fundamental importance for the estimation and analysis of the economic and social impacts through the comparative analysis of technological solutions in scenarios of “accelerated technological evolution” and/or “sustainable mobility”. The study could be designed for different vehicle segments to evaluate their efficiency and overall environmental sustainability also related to current social and political scenarios. Couples with electric and internal combustion vehicles of the same market segment and category may be compared.
Technical Paper

Experimental and Numerical Investigation of a Particle Filter Technology for NG Heavy-Duty Engines

2023-04-11
2023-01-0368
The forthcoming introduction of the EURO VII regulation requires urgent strategies and solutions for the reduction of sub-23 nm particle emissions. Although they have been historically considered as particulate matter-free, the high interest for Natural Gas (NG) Heavy-Duty engines in the transport sector, demands their compliance with the new proposed regulations. In order to obtain high conversion of gas pollutants and a strong abatement of the emitted particles, the use of Particle Filters in NG aftertreatment (CPF) in conjunction with the Three-Way Catalyst (TWC) may represent an attractive and feasible solution. Performances of a cordierite filter were explored through an extensive experimental campaign both in Steady-State conditions and during transient engine maneuvers that involved a whole analysis of the emitted particles in terms of number and mass.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

Review and Assessment of the Material’s Compatibility for Rubbers and Elastomers in Hydrogen Internal Combustion Engines

2022-03-29
2022-01-0331
Hydrogen Internal Combustion Engines (H2-ICEs) are being investigated due to their minimal criteria pollutant and zero CO2 tailpipe emissions. However, oil filters and non-hot joint gaskets have rubber material that can be damaged and deteriorate due to direct or indirect exposure to the high temperature and high-pressure hydrogen in a H2-ICE. Thus, the effects on the properties of a rubber exposed to a hydrogen environment need to be reviewed. In this review paper, the transportation, chemical and mechanical properties of a rubber exposed directly or indirectly to high temperature and high-pressure hydrogen in a H2-ICE have been reviewed. The compatibility of rubber materials used in H2-ICE has been explored. The effects of high-pressure hydrogen on the transportation, chemical and mechanical properties of NBR and HNBR have been reviewed.
Technical Paper

Model Development of a CNG Active Pre-chamber Fuel Injection System

2021-09-05
2021-24-0090
Natural gas as an internal combustion engine fuel is taking a predominant role as a mid-term solution to pollution due to combustion driven human activities both in the energy and transport sectors. Engine researchers and manufacturers are in the process of investigating and improving strategies that decrease emissions and fuel consumption, without compromising engine performance and efficiency; active pre-chamber configurations are to be accounted for as one of these. A relatively small amount of fuel (up to 10 % of the total fuel-energy requirement) is introduced in the confined volume of the pre-chamber and forms a close-to-stoichiometric mixture with fresh charge that is introduced from the main combustion chamber during the compression stroke. After spark-ignition the products of this early stage of combustion can ignite ultra-lean mixtures (with λ up to 2) through the Turbulent Jet Ignition mechanism, hence reducing fuel consumption as well as noxious emissions such as NOx.
Technical Paper

Methane Conversion and Ammonia Formation Model over a Pd-Rh Three-Way Catalyst for CNG Heavy-Duty Engines

2021-09-05
2021-24-0002
Research activities in the development of reliable computational models for aftertreatment systems are constantly increasing in the automotive field. These investigations are essential in order to get a complete understanding of the main catalytic processes which clearly have a great impact on tailpipe emissions. In this work, a 1D chemical reaction model to simulate the catalytic activity of a Pd/Rh Three-Way Catalyst (TWC) for a Natural Gas heavy-duty engine is presented. An extensive database of tests carried out with the use of a Synthetic Gas Bench (SGB) has been collected to investigate the methane abatement pathways, linked to the lambda variation and oxide formation on palladium surface. Specific steady-state tests have shown a dynamics of the methane conversion even at fixed λ and temperature conditions, essentially due to the Pd/PdO ratio.
Technical Paper

Ethanol in a Light-Duty Dual Fuel Compression Ignition Engine: 3-D Analysis of the Combustion Process

2021-09-05
2021-24-0036
A wider use of biofuels in internal combustion engines could reduce the emissions of pollutants and greenhouse gases from the transport sector. In particular, due to stringent emission regulatory programs, compression ignition engine requires interventions aimed at reducing their polluting emissions. Ethanol, a low carbon fuel generally produced from biomass, is a promising alternative fuel applicable in compression ignition engines to reduce CO2 and soot emissions. In this paper, the application of a dual fuel diesel-ethanol configuration in a light-duty compression ignition engine has been numerically investigated. Ethanol is injected into the intake port, while diesel fuel is directly injected into the combustion chamber of the analyzed engine. CFD simulations have been carried out by means of the AVL Fire 3-D code. The operation at given engine load and speed has been simulated considering different diesel injection timings.
Technical Paper

Effect of Injection Strategy and EGR on Particle Emissions from a CI Engine Fueled with an Oxygenated Fuel Blend and HVO

2021-04-06
2021-01-0560
Alcohol-based fuels are a viable alternative to fossil fuels for powering vehicles. As a drop-in fuel, an oxygenated fuel blend containing the C8 alcohol 2-ethylhexanol (isomer of octanol), hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME) can reduce soot and NOx emissions whilst maintaining engine performance. However, fuel injection strategy significantly affects combustion and hence has been investigated with a view to reducing emissions whilst maintaining engine efficiency. In a single cylinder light-duty compression ignition research engine, the effect of different injection strategies (main, main/post, double pre/main, double pre/main/post injection) and EGR levels (0%, 19%) on specifically NOx, soot emissions and particle size distribution was investigated for three different fuels: fossil diesel fuel, HVO and the oxygenated blend. The blend was designed to have diesel-like combustion properties (cetane number of 52) and had an oxygen content of 5.4% by mass.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Combustion and Emission Characteristics of a Diesel Engine Fuelled with Diesel-LPG Blends

2019-09-09
2019-24-0038
Recently, it has been worth pointing out the relevance of alternative fuels in the improvement of air quality conditions and in the mitigation of global warming. In order to deal with these demands, in recent studies, it has been considered a great variety of alternative fuels. It goes without saying that the alternative fuels industry needs the best of the efficiency with a moderate layout. From this perspective, Liquefied Petroleum Gas (LPG) could represent a valid option, although it is not a renewable fuel. In terms of polluting emissions, the LPG can reduce nitrous oxides and smoke concentrations in the air, a capability that has a relevant importance for the modern pollution legislation. LPG is well known as an alternative fuel for Spark Ignition (SI) engines and, more recently, LPG systems have also been introduced in the Compression Ignition (CI) engines in dual-fuel configuration.
Technical Paper

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

2019-09-09
2019-24-0074
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR). A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.
Technical Paper

Emissive Behavior of a Heavy-Duty SI Gas Engine During WHTC

2019-09-09
2019-24-0121
In the arduous aim to reduce petroleum fuel consumption and toxic emissions, gaseous fuels can represent an alternative solution for heavy duty applications with respect to conventional liquid fuels. At the same time, the imposition of more stringent emission regulations in the transport sector, is a crucial aspect to be taken into account during the development of future gas engines. Aim of the present paper was to characterize a heavy duty spark ignition engine, under development for Euro VI compliance, with a particular focus on exhaust particulate emissions. In this sense, the engine was installed on a dynamic test bench, accurately instrumented to analyze combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC).
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Journal Article

Key Fuel Injection System Features for Efficiency Improvement in Future Diesel Passenger Cars

2019-04-02
2019-01-0547
Diesel will continue to be an indispensable energy carrier for the car fleet CO2 emission targets in the short-term. This is particularly relevant for heavy-duty vehicles as for mid-size cars and SUVs. Looking at the latest technology achievements on the after-treatment systems, it can be stated that the concerning about the NOx emission gap between homologation test and real road use is basically solved, while the future challenge for diesel survival is to keep its competitiveness in the CO2 vs cost equation in comparison to other propulsion systems. The development of the combustion system design still represents an important leverage for further efficiency and emissions improvements while keeping the current excellent performance in terms of power density and low-end torque.
Technical Paper

Comparison of Long-Chain Alcohol Blends, HVO and Diesel on Spray Characteristics, Ignition and Soot Formation

2019-01-15
2019-01-0018
Spray characteristics of fossil Diesel fuel, hydrotreated vegetable oil (HVO) and two oxygenated fuel blends were studied to elucidate the combustion process. The fuels were studied in an optically accessible high-pressure/high-temperature chamber under non-combusting (623 K, 4.69 MPa) and combusting (823 K, 6.04 MPa) conditions. The fuel blends contained the long-chain alcohol 2-ethylhexanol (EH), HVO and either 20 vol.% Diesel or 7 vol.% rapeseed methyl ester (RME) and were designed to have a Diesel-like cetane number (CN). Injection pressures were set to 120 MPa and 180 MPa and the gas density was held constant at 26 kg/m3. Under non-combusting conditions, shadow imaging revealed the penetration length of the liquid and vapor phase of the spray. Under combusting conditions, the lift-off length and soot volume fraction were measured by simultaneously recording time-resolved two-dimensional laser extinction, flame luminosity and OH* chemiluminescence images.
Technical Paper

Optical Diagnostics of Spray Characteristics and Soot Volume Fractions of n-Butanol, n-Octanol, Diesel, and Hydrotreated Vegetable Oil Blends in a Constant Volume Combustion Chamber

2019-01-15
2019-01-0019
The effects of using n-butanol, n-octanol, fossil Diesel, hydrotreated vegetable oil (HVO), and blends of these fuels on spray penetration, flame and soot characteristics were investigated in a high-pressure high-temperature constant volume combustion chamber designed to mimic a heavy duty Diesel engine. Backlight illumination was used to capture liquid and vapor phase spray images with a high-speed camera. The flame lift-off length (LOL) and ignition delay were determined by analyzing OH* chemiluminescence images. Laser extinction diagnostics were used to measure the spatially and temporally resolved soot volume fraction. The spray experiments were performed by injecting fuels under non-combusting (623 K) and combusting (823 K) conditions at a fixed ambient air density of 26 kg/m3. A Scania 0.19 mm single straight hole injector and Scania XPI common rail fuel supply system were used to produce injection pressures of 120 MPa and 180 MPa.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
X