Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Mixture Formation and Corresponding Knock Limits in a Hydrogen Direct Injection Engine Using Different Jet Forming Caps

2024-04-09
2024-01-2113
The need for carbon-neutral transportation solutions has never been more pronounced. With the continually expanding volume of goods in transit, innovative and dependable powertrain concepts for freight transport are imperative. The green hydrogen-powered internal combustion engine presents an appealing option for integrating a reliable, non-fossil fuel powertrain into commercial vehicles. This study focuses on the adaptation of a single-cylinder diesel engine with a displacement of 2116 cm3 to facilitate hydrogen combustion. The engine, characterized by low levels of swirl and tumble, underwent modifications, including the integration of a conventional central spark plug, a custom-designed piston featuring a reduced compression ratio of 9.5, and a low-pressure hydrogen direct injection system. Operating the injection system at 25 bar hydrogen pressure, the resulting jet profiles were varied by employing jet forming caps affixed directly to the injector nozzle.
Journal Article

Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine

2022-01-09
2022-32-0027
The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine. A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.
Technical Paper

Influence of the MeFo and DMC Content in the Fuel on the Gasoline DI Spray Characteristics with the Focus on Droplet Speed and Size

2021-09-21
2021-01-1191
E-fuels are proven to be a major contributing factor to reduce CO2 emissions in internal combustion engines. In gasoline engines, C1 oxygenate are seen as critical to reach CO2 and emission reduction goals. Their properties affect the fuel injection characteristics and thus the fuel mixture formation and combustion emissions. To exploit the full potential of e-fuels, the detailed knowledge of their spray characteristic is necessary. The correlation between the fuel content of C1 oxygenates and particulate emissions do not appear to be linear. To understand this correlation, the spray characteristics have to be investigated in detail. The reduced stoichiometric air requirement leads to an increase of the injected fuel mass, which has to evaporate. This can lead to a changed fuel film interaction within the combustion chamber walls and therefore a change of particle formation.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Optical Measurement of Spark Deflection Inside a Pre-chamber for Spark-Ignition Engines

2020-10-14
2020-01-5096
The start of combustion in a spark-ignited engine is highly dependent upon the conditions between the two spark plug electrodes at ignition. In addition to the air-to-fuel ratio in this gap, the gas flow is seen as most critical. In a combustion engine with a standard spark plug that protrudes into the combustion chamber, this gas flow is mainly dependent upon the tumble, swirl, or squish that is developed by the cylinder head and the piston movement. However, the air movement in the pre-chamber depends on the orientation of the orifices towards the main combustion chamber (MCC). This implies a less complex manipulation of local velocity in the electrode gap. This paper focuses on the effect of different pre-chamber designs on spark deflection by the inflowing gas. Therefore, a test rig was developed using the spark plug thread in the cylinder head of a motored engine.
Technical Paper

The Effects of Intake Pressure on In-Cylinder Gas Velocities in an Optically Accessible Single-Cylinder Research Engine

2020-04-14
2020-01-0792
Particle image velocimetry measurements of the in-cylinder flow in an optically accessible single-cylinder research engine were taken to better understand the effects of intake pressure variations on the flow field. At a speed of 1500 rpm, the engine was run at six different intake pressure loads from 0.4 to 0.95 bar under motored operation. The average velocity fields show that the tumble center position is located closer to the piston and velocity magnitudes decrease with increasing pressure load. A closer investigation of the intake flow near the valves reveals sharp temporal gradients and differences in maximum and minimum velocity with varying intake pressure load which are attributed to intake pressure oscillations. Despite measures to eliminate acoustic oscillations in the intake system, high-frequency pressure oscillations are shown to be caused by the backflow of air from the exhaust to the intake pipe when the valves open, exciting acoustic modes in the fluid volume.
Technical Paper

Comparison of Different Particle Measurement Techniques at a Heavy-Duty Diesel Engine Test Bed

2019-09-09
2019-24-0158
The particle size distribution (PSD) of submicron exhaust engine-out soot, is typically determined using a method based on the electrical mobility is used. This measurement procedure is subjected to uncertainty mainly due to inaccurate dilution of the sampled aerosol, unknown flow conditions at the probe inlet and the limited measurement accuracy of the device itself. In order to determine the measurement uncertainty, two different aerosol spectrometers, a TSI EEPS 3090 and a Cambustion DMS500 were installed and operated simultaneously at a single-cylinder heavy-duty diesel engine at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology (KIT).The engine was operated at various operating points to evaluate the ability of the spectrometers to correctly determine the PSD and the total particle number concentration (TPNC) at different boundary conditions.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro VI Heavy-Duty Diesel Engine with High EGR-Rates, an In-Cylinder Peak Pressure of 250 Bar and an Injection Pressure up to 2500 Bar

2019-09-09
2019-24-0171
A raise of efficiency is the strongest selling point concerning the total cost of ownership (TCO), especially for commercial vehicles (CV). Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. Wall heat transfer (WHT) losses are awarded with the highest optimization potential. Critical for the occurrence of these losses is the WHT, which can be described by representing coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is necessary to determine the WHT relations of the combustion chamber in an engine. As this has not been done for a Heavy-Duty (HD) engine, with peak pressures up to 250 bar, an increased in-cylinder turbulence and high exhaust gas recirculation (EGR)-rates before, it is presented in the following.
Technical Paper

Investigation of the Ignition Process of Pilot Injections Using CFD

2019-09-09
2019-24-0129
State of the art high-pressure fuel injectors offer the ability to inject multiple times per cycle, and can reach very low fuel amounts per injection event. This behaviour allows the application of pilot injections in diesel engine applications or dual fuel engines. In both diesel and dual fuel engines, the amount of pilot fuel affects the engine efficiency. The understanding of the underlying ignition mechanism of the pilot fuel is required to optimize injection parameters and the engines’ fuel consumption. The present work focuses on the differences of ignition mechanisms between long and short injections. The investigation has been performed numerically, using CFD with a well-proven combustion model. The setup used employs a well characterized single orifice injector, injecting into a high temperature, pressurized environment with a composition of 15% oxygen.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines

2019-04-02
2019-01-0260
The current trend in automobiles is towards electrical vehicles, but for the most part these vehicles still require an internal combustion engine to provide additional range and flexibility. These engines are under stringent emissions regulations, in particular, for the reduction of CO2. Gas engines which run lean burn combustion systems provide a viable route to these emission reductions, however designing these engines to provide sustainable and controlled combustion under lean conditions at λ=2.0 is challenging. To address this challenge, it is possible to use a scavenged Pre-Chamber Ignition (PCI) system which can deliver favorable conditions for ignition close to the spark plug. The lean charge in the main combustion chamber is then ignited by flame jets emanating from the pre-chamber nozzles. Accurate prediction of flame kernel development and propagation is essential for the analysis of PCI systems.
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Technical Paper

Numerical Simulations of Pre-Chamber Combustion in an Optically Accessible RCEM

2019-04-02
2019-01-0224
In this work, numerical simulations of an automotive-sized scavenged pre-chamber mounted in an optically-accessible rapid compression-expansion machine (RCEM) have been carried out using two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES). The RANS approach is combined with the G-equation combustion model, whereas the LES approach is coupled with the flamelet generated manifold (FGM) model for partially-premixed combustion. Simulation results are compared with experimental data in terms of OH* chemiluminescence in the main chamber. Both RANS and LES results were found to qualitatively reproduce the main features observed experimentally in terms of spatial flame development. Simulation results are further analysed by means of early flame propagation within the pre-chamber (related to the fuel and turbulence intensity distributions) and the ignition process in the main chamber.
Technical Paper

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES

2019-04-02
2019-01-0198
It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
Technical Paper

POMDME as an Alternative Pilot Fuel for Dual-Fuel Engines: Optical Study in a RCEM and Application in an Automotive Size Dual-Fuel Diesel Engine

2018-09-10
2018-01-1734
Dual-fuel natural gas engines are seen as an attractive solution for simultaneous reduction of pollutant and CO2 emissions while maintaining high engine thermal efficiency. However, engines of this type exhibit a tradeoff between misfire as well as high UHC emissions for small pilot injection amounts and higher emissions of soot and NOX for operation strategies with higher pilot fuel proportion. The aim of this study was to investigate POMDME as an alternative pilot fuel having the potential to mitigate the emissions tradeoff, enabling smokeless combustion due to high degree of oxygenation, and being less prone to misfire due to its higher cetane number. Furthermore, POMDME can be synthetized carbon neutrally. First, characteristics of POMDME ignition in methane/air mixture and the transition into premixed flame propagation were investigated optically in a rapid compression-expansion machine (RCEM) by employing Schlieren and OH* chemiluminescence imaging.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Technical Paper

Assessment of Two Premixed LES Combustion Models in an Engine-Like Geometry

2018-04-03
2018-01-0176
Large Eddy Simulation (LES) of premixed turbulent combustion in a confined cylinder setup at engine relevant conditions has been carried out for three different initial turbulence intensities, mimicking different flame propagation regimes. Direct Numerical Simulation (DNS) of the setup under investigation provides the reference data to be compared against. The DNS fields have been filtered on the LES grid and are used as initial conditions for the LES at onset of combustion, guaranteeing a direct comparability of the single realizations between the modeled and reference data. Two different combustion models, the G-Equation and CMC-premixed (Conditional Moment Closure) are compared with respect to their predictive capabilities as well as their usability and computational cost. While the G-Equation is a widely adopted approach for industrial applications and usually relies on a tunable turbulent flame speed closure, the novel LES-CMC comes as a tuning parameter free model.
Technical Paper

Investigations on the Influence of Fuel Oil Film Interaction on Pre-ignition Events in Highly Boosted DI Gasoline Engines

2018-04-03
2018-01-1454
Premature and uncontrolled flame initiation, called pre-ignition (PI), is a prominent issue in the development of spark-ignited engines. It is commonly assumed that this abnormal combustion mode hinders progress in engine downsizing, thus inhibiting development of more efficient engines. The phenomenon is primarily observed in highly turbocharged spark ignited (SI) engines in the full load regime at low engine speeds. Subsequent engine knock induces extremely high peak pressures, potentially causing severe engine damage. The mechanisms leading to this phenomenon are not completely understood; however, it is quite plausible that a multiphase process is responsible for the pre-ignition. One effect could be the interaction between injected fuel drops and the oil film on the cylinder liner. Under certain conditions, droplets of oil or oil/fuel mixture can detach or splash from the film, leading to pre-ignition at the droplet surface towards the end of the compression phase.
Technical Paper

A Zero Dimensional Turbulence and Heat Transfer Phenomenological Model for Pre-Chamber Gas Engines

2018-04-03
2018-01-1453
Most of the phenomena that occur during the high pressure cycle of a spark ignition engine are highly influenced by the gas temperature, turbulence intensity and turbulence length scale inside the cylinder. For a pre chamber gas engine, the small volume and the high surface-to-volume ratio of the pre chamber increases the relative significance of the gas-to-wall heat losses, the early flame kernel development and the wall induced quenching; all of these phenomena are associated up to a certain extent with the turbulence and temperature field inside the pre chamber. While three-dimensional (3D) computational fluid dynamics (CFD) simulations can capture complex phenomena inside the pre chamber with high accuracy, they have high computational cost. Quasi dimensional models, on the contrary, provide a computationally inexpensive alternative for simulating multiple operating conditions as well as different geometries.
X