Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Engine Parameter Optimization for Improved Engine and Drive Cycle Efficiency for Boosted, GDI Engines with Different Boosting System Architecture

2014-04-01
2014-01-1204
As boosted, direct injected gasoline engines become more prevalent in the automotive market, the boosting system architecture and efficiency are intimately entwined with the efficiency and performance of the engine. Single-stage as well as two-stage boosting systems, comprising of either two turbochargers or a supercharger in combination with a turbocharger, are potential configurations. When combining an internal combustion engine with boosting hardware, a mechanical, fluid-dynamic and thermodynamic coupling is created and the system as a whole will need to be treated as such.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Journal Article

Lubricant Reactivity Effects on Gasoline Spark Ignition Engine Knock

2012-04-16
2012-01-1140
The performance and efficiency of spark ignited gasoline engines is often limited by end-gas knock. In particular, when operating the engine at high loads, combustion phasing is retarded to prevent knock, resulting in a significant reduction of engine efficiency. Since the invention of the spark ignition (SI) engine, much work has been devoted to improve and regulate fuel characteristics, such as octane number, to suppress engine knock. The auto-ignition tendency of the engine lubricant however, as described by cetane number (CN), has received little attention, as it has been assumed that engine lubricant effects on knock are insignificant, primarily due to low levels of average oil consumption. However, with modern SI engines being developed to operate at higher loads and closer to knock limits, the reactivity of engine lubricants can impact the knock behavior.
Journal Article

The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0339
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines - where the engine displacement is reduced and turbocharging is employed to increase specific power - a new combustion phenomenon, described as Low-Speed Pre-Ignition (LSPI), has been exhibited. LSPI is characterized as a pre-ignition event typically followed by heavy knock, which has the potential to cause degradation of the engine. However, because LSPI events occur only sporadically and in an uncontrolled fashion, it is difficult to identify the causes for this phenomenon and to develop solutions to suppress it. Some countermeasures exist that OEMs can use to avoid LSPI, such as load limiting, but these have drawbacks.
Journal Article

Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines

2011-04-12
2011-01-0342
Downsizing is an important concept to reduce fuel consumption as well as emissions of spark ignition engines. Engine displacement is reduced in order to shift operating points from lower part load into regions of the operating map with higher efficiency and thus lower specific fuel consumption [ 1 ]. Since maximum power in full load operation decreases due to the reduction of displacement, engines are boosted (turbocharging or supercharging), which leads to a higher specific loading of the engines. Hence, a new combustion phenomenon has been observed at high loads and low engine speed and is referred to as Low-Speed Pre-Ignition or LSPI. In cycles with LSPI, the air/fuel mixture is ignited prior to the spark which results in the initial flame propagation quickly transforming into heavy engine knock. Very high pressure rise rates and peak cylinder pressures could exceed design pressure limits, which in turn could lead to degradation of the engine.
Technical Paper

Evaluation of HCCI Engine Potentials in Comparison to Advanced Gasoline and Diesel Engines

2006-10-16
2006-01-3249
The objective of this program was to improve the HCCI combustion process on a single-cylinder VCR engine by calibrating engine and HCCI operation specific factors such as EGR flow rates, intake air pressure, intake air temperature, compression ratio, etc. Due to the large number of factors to be investigated, a statistical design of experiments method (DoE) was utilized in order to reduce the number of test combinations in the calibration test matrix and, thus, the duration of the engine calibration task. Upon completion of the HCCI engine calibration, the engine was operated through a steady-state test matrix representing vehicle certification test cycles. Weighting factors for each of the test points were applied to estimate the engine performance and emissions in respect to certification requirements.
Technical Paper

On-Board Fuel Property Classifier for Fuel Property Adaptive Engine Control System

2006-04-03
2006-01-0054
This paper explores the possibility of on-board fuel classification for fuel property adaptive compression-ignition engine control system. The fuel classifier is designed to on-board classify the fuel that a diesel engine is running, including alternative and renewable fuels such as bio-diesel. Based on this classification, the key fuel properties are provided to the engine control system for optimal control of in-cylinder combustion and exhaust treatment system management with respect to the fuel. The fuel classifier employs engine input-output response characteristics measured from standard engine sensors to classify the fuel. For proof-of-concept purposes, engine input-output responses were measured for three different fuels at three different engine operating conditions. Two neural-network-based fuel classifiers were developed for different classification scenarios. Of the three engine operating conditions tested, two conditions were selected for the fuel classifier to be active.
Technical Paper

HCCI Fuels Evaluations-Gasoline Boiling Range Fuels

2005-10-24
2005-01-3727
Four fuels in the gasoline boiling range where tested in a constant volume combustion bomb and a variable compression ratio HCCI engine. The fuels were tested using a port fuel injection system. The results of the experiments defined the range of HCCI operation in terms of the Coefficient of Variation (COV) of IMEP and the maximum rate of pressure rise. The results for the test fuels are compared to each other and to a baseline gasoline. The results are discussed in terms of the effects of the fuel properties (basically, various measure of ignition quality) on the engine heat release rates and efficiencies.
Technical Paper

Heavy-Duty Diesel Engine Emissions Tests Using Special Biodiesel Fuels

2005-10-24
2005-01-3671
A 2003 heavy-duty diesel engine (2002 emissions level) was used to test a representative biodiesel fuel as well as the methyl esters of several different fatty acids. The fuel variables included degree of saturation, the oxygen content, and carbon chain length. In addition, two pure normal paraffins with the corresponding chain lengths of two of the methyl esters were also tested to determine the impact of chain length. The dependent variables were the NOx and the particulate emissions (PM). The results indicated that the primary fuel variable affecting the emissions is the oxygen content. The emissions results showed that the highest oxygen content test fuel had the lowest emissions of both NOx and PM. As compared to the baseline diesel fuel the NOx emissions were reduced by 5 percent and the PM emissions were reduced by 83 percent.
Technical Paper

Performance Predictions for High Efficiency Stoichiometric Spark Ignited Engines

2005-04-11
2005-01-0995
Southwest Research Institute (SwRI) is exploring the feasibility of extending the performance and fuel efficiency of the spark ignition (SI) engine to match that of the emission constrained compression (CI) engine, whilst retaining the cost effective 3-way stoichiometric aftertreatment systems associated with traditional SI light duty engines. The engine concept, which has a relatively high compression ratio and uses heavy EGR, is called “HEDGE”, i.e. High Efficiency Durable Gasoline Engine. Whereas previous SwRI papers have been medium and heavy duty development focused, this paper uses results from simulations, with some test bed correlations, to predict multicylinder torque curves, brake thermal efficiency and NOx emissions as well as knock limit for light and medium duty applications.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

Electronic Fuel System Development for Air-Cooled Motorcycles

2004-09-27
2004-32-0059
Southwest Research Institute® (SwRI®) has developed electronic fuel injection (EFI) systems to be used on air-cooled motorcycle applications. In order to explore differences in application requirements between large and small displacement motorcycles, a large twin-cylinder, four-stroke, air-cooled motorcycle, and a small single cylinder, four-stroke, air-cooled motorcycle were utilized. The primary objectives of this study were to meet current and future emissions regulations for motorcycle exhaust emissions, to raise fuel economy, and to improve overall engine performance. The EFI development required baseline testing, control system setup, design of intake system components, installation of sensors and control unit, fuel system integration, steady-state and transient calibration, fuel consumption development, emissions development, performance improvement, and acceleration testing.
Technical Paper

HCCI in a Variable Compression Ratio Engine-Effects of Engine Variables

2004-06-08
2004-01-1971
Homogeneous Charge Compression Ignition (HCCI) experiments were performed in a variable compression ratio single cylinder engine. This is the fourth paper resulting from work performed at Southwest Research Institute in this HCCI engine. The experimental variables, in addition to speed and load, included compression ratio, EGR level, intake manifold pressure and temperature, fuel introduction location, and fuel composition. Mixture preparation and start of reaction control were identified as fundamental problems that required non-traditional mixture preparation and control strategies. The effects of the independent variable on the start of reaction have been documented. For fuels that display significant pre-flame reactions, the start of the pre-flame reactions is controlled primarily by the selection of the fuel and the temperature history of the fuel air mixture.
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
Technical Paper

Fuel Requirements for HCCI Engine Operation

2003-05-19
2003-01-1813
Researchers at Southwest Research Institute (SwRI) have been working for the past several years on the fundamental and practical aspects of homogeneous charge compression ignition (HCCI) operation of reciprocating engines. Much of the work has focused on the use of diesel fuel. The work at SwRI has, however, demonstrated that there are fundamental limitations on the use of current diesel fuels in HCCI engines. The results of engine and constant volume combustion bomb experiments are presented and discussed. The engine experiments were used to identify important fuel properties that must be included in a fuel specification for HCCI fuels. The primary properties relate to the distillation characteristics and the ignition characteristics. The engine test provided preliminary guidance on the distillation requirements and an indication of the important ignition requirements.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Partial Pre-Mixed Combustion with Cooled and Uncooled EGR in a Heavy-Duty Diesel Engine

2002-03-04
2002-01-0963
An experimental investigation of the effects of partial premixed charge compression ignition (PCCI) combustion and EGR temperature was conducted on a Caterpillar C-12 heavy-duty diesel engine (HDDE). The addition of EGR and PCCI combustion resulted in significant NOx reductions over the AVL 8-mode test. The lowest weighted BSNOx achieved was 2.55 g/kW-hr (1.90 g/hp-hr) using cooled EGR and 20% port fuel injection (PFI). This represents a 54% reduction compared to the stock engine. BSHC and BSCO emissions increased by a factor of 8 and 10, respectively, compared to the stock engine. BSFC also increased by 7.7%. In general, BSHC, BSCO, BSPM, and BSFC increased linearly with the amount of port-injected fuel.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™) - Part IV

2001-09-24
2001-01-3527
This paper reports on the fourth part of a continued study on further research and development with the automated Ignition Quality Tester (IQT™). Research over the past six years (reported in SAE papers #961182, 971636 and 1999-01-3591) has demonstrated the capabilities of this automated apparatus to measure the ignition quality and accurately determine a derived cetane number (DCN) for a wide range of middle distillate and non-conventional diesel fuels. The present paper reports on a number of separate investigations supporting these continued studies.
Technical Paper

HCCI Operation of a Dual-Fuel Natural Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low to Moderate Engine Loads

2001-05-07
2001-01-1897
A new combustion concept has been developed and tested for improving the low to moderate load efficiency and NOx emissions of natural gas engines. This concept involves operation of a dual-fuel natural gas engine on Homogeneous Charge Compression Ignition (HCCI) in the load regime of idle up to 35 % of the peak torque. A dual-fuel approach is used to control the combustion phasing of the engine during HCCI operation, and conventional spark-ignited natural gas combustion is used for the high-load regime. This concept has resulted in an engine with power output and high-load fuel efficiency that are unchanged from the base engine, but with a 10 - 15 % improvement to the low to moderate load fuel efficiency. In addition, the engine-out NOx emissions during HCCI operation are over 90% lower than on spark-ignited natural gas operation over the equivalent load range.
X