Refine Your Search

Topic

Search Results

Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2023-01-20
CURRENT
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Aircraft Seat Design Guidance and Clarifications

2022-05-24
CURRENT
ARP5526F
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Method to Evaluate Passenger and Flight Attendant Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2022-02-14
CURRENT
ARP6199B
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR Part 25 transport airplane passenger and flight attendant seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR Part 25 Appendix F, Parts IV and V. Additionally, it is recommended to use materials that meets the requirements of 14 CFR Part 25 Appendix F, Parts IV and V in applications where not required. Independent furniture installations related to seat installations are outside the scope of this document.
Standard

Webbing Service Life for Occupant Restraints

2021-10-01
CURRENT
ARP6073
This document applies to webbing used on occupant restraint systems in service on 14 CFR/CS part 23, part 25, part 27, and part 29 aircraft applications. The guidelines presented within this document are intended to be supplemental to the requirements supplied by the OEM in the CMM, ICA, or like document. In cases of conflict between this ARP and the OEM’s requirements, the requirements of the OEM shall be followed. The objective of this document is to establish practical guidelines to help operators in the determining if restraint webbing has reached the end of its service life. The recommendations contained herein are based on test data from in service restraint systems and the continued airworthiness guidelines recommended by restraint system OEMs.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2021-03-30
CURRENT
ARP5765B
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Title 14, Code of Federal Regulations (14 CFR) Parts 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). This document provides a recommended methodology to evaluate the degree of correlation between a seat model and dynamic impact tests. This ARP also provides best practices for testing and modeling designed to support the implementation of analytical models of aircraft seat systems.
Standard

Performance Standard for Seat Furnishings in Transport Aircraft

2021-03-22
CURRENT
AS6960
Seat furnishings are installed around seats and are intended to enhance passenger privacy and comfort. They may have provisions for additional occupants to be seated when the aircraft is in-flight, but would not be occupied during taxi, take-off, and landing (TTL). This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for seat furnishings with and without upper attachments (see Figures 1 and 2) to be installed in large transport category airplanes. This standard excludes seat furnishing designs that are directly attached to the seat assembly, for which AS8049 is the applicable standard. Integrated items (desk tops, cabinets, shelves, stowage areas, closeouts, dividers, etc.) connected to seat furnishings shall comply with the requirements of this AS as part of the seat furnishings.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2021-01-05
WIP
AS8049E
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2020-11-02
CURRENT
AS8049D
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Magnesium Alloys in Aircraft Seats - Engineering Design and Fabrication Recommended Practices

2019-10-31
CURRENT
ARP6256
This document is a guide to the application of magnesium alloys to aircraft interior components including but not limited to aircraft seats. It provides background information on magnesium, its alloys and readily available forms such as extrusions and plate. It also contains guidelines for “enabling technologies” for the application of magnesium to engineering solutions including: machining, joining, forming, cutting, surface treatment, flammability issues, and designing from aluminum to magnesium.
Standard

Performance Standard for Child Restraint Systems in Transport Category Airplanes

2019-10-31
CURRENT
AS5276/1
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2016-05-13
HISTORICAL
ARP6316
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18 and no greater than 30 degrees relative to the aircraft longitudinal axis. Later revisions are intended to provide criteria for other facing directions. Performance criteria for side facing seats installed with the occupant facing direction at 90 degrees relative to the aircraft longitudinal axis are provided in AS8049/1. Seats installed at angles greater than 30 degrees relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness. However, this document does not provide the criteria for oblique facing seats incorporating such rests.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2015-12-04
HISTORICAL
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2015-08-14
HISTORICAL
AS8049C
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Restraint Systems for Civil Aircraft

2014-03-31
HISTORICAL
AS8043B
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2012-10-03
HISTORICAL
ARP5765
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations 14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample report.
Standard

Photometric Data Acquisition Procedures for Impact Test

2011-11-28
CURRENT
ARP5482A
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Aircraft Seat Design Guidance and Clarifications

2011-05-24
HISTORICAL
ARP5526C
This Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
X