Refine Your Search

Topic

Search Results

Standard

Aircraft Brake Temperature Monitoring

2021-10-28
CURRENT
ARP6812
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

2020-11-25
WIP
AS707D
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Information on Parking Brake Systems

2020-09-16
CURRENT
AIR6441
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

2019-02-15
CURRENT
AS707C
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
Standard

Information on Electric Brakes

2019-02-15
CURRENT
AIR5937
This SAE Aerospace Information Report (AIR) describes the design, operation, and attributes of electrical braking systems for both military and commercial aircraft. At this time, the document focuses only on brakes utilizing electromechanical actuators (EMAs), as that is the present state of the art. As such, the discussions herein assume that EMAs can simply replace the hydraulic actuation portion of typical brake system leaving things such as the wheel and heat sink unchanged. Furthermore, the document provides detail information from the perspective of brake system design and operation. The document also addresses failure modes, certification issues, and past development efforts. Details on the design and control of electric motors, gear train design, ball or roller screw selection are available in the reference documents and elsewhere, but are outside the scope of this document.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2016-09-14
CURRENT
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Automatic Braking Systems

2016-01-25
CURRENT
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems

2014-08-20
HISTORICAL
ARP1907B
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Aircraft Tire Inflation-Deflation Equipment

2014-07-11
CURRENT
AS1188A
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2013-04-22
HISTORICAL
ARP1070C
This document recommends minimum requirements for antiskid brake control to provide total aircraft systems compatibility. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Methods of determining and evaluating antiskid system performance are discussed. While this document specifically addresses antiskid systems which are a part of a hydraulically actuated brake system, the recommended practices are equally applicable to brakes actuated by other means, such as electrically actuated brakes.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-03-11
WIP
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard

Skid Control System Vibration Survey

2012-09-05
CURRENT
AIR764D
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2012-05-09
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
X