Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
Technical Paper

Experimental and Numerical Investigation of a Single-Cylinder Methanol Port-Fuel Injected Spark Ignition Engine for Heavy-Duty Applications

2024-01-16
2024-26-0072
With the increasing focus on reducing CO2 emissions to combat global warming and climate change, the automotive industry is exploring near zero-emission alternative fuels to replace traditional fossil-based fuels like diesel, gasoline, and CNG. Methanol is a promising alternative fuel that is being evaluated in India due to its easy transportation and storage, as well as its production scalability and availability potential. This study focuses on the retro-fitment solution of M100 (pure methanol) SI port-fuel injection (PFI) mode of combustion. A heavy duty single-cylinder engine test setup was used to assess methanol SI combustion characteristic. Lean operation strategy has been investigated. At lean mixture conditions a significant drop in NOX and CO emissions was achieved. The fuel injection techniques and the impact of exhaust gas recirculation (EGR) on the conventional stoichiometric combustion process is highlighted.
Technical Paper

Fuel Cell Electric Metro Train Concept – Zero Emission Rail Transport Solution for Indian Cities

2024-01-16
2024-26-0179
Indian cities are among the most polluted in the world. The transportation sector is one of the major sources of gaseous pollutants. In recent years, also the effects of climate change and global warming have been felt across the globe. India has therefore committed at the CoP26 summit in 2021 to reduce its CO2 emissions by 45% till the year 2030. The Indian automotive sector is already addressing the problem with implementation of the Stage 2 BS VI norms, CAFÉ & Stage V standards and pursuing rapid electrification with application of zero emission vehicles. India also has the largest rail network of Asia, and a significant proportion of greenhouse gases is emitted by this sector. Deployment of zero emission fuel cell trains would be one of the solutions to meet India’s emission reduction targets.
Technical Paper

Optimised Air Management System for Heavy Duty Hydrogen Engines

2024-01-16
2024-26-0171
Many Indian cities are amongst the most polluted cities in the world. Transport sector is identified as one of the major contributors to air pollution. Following the global trend, Government of India is also promoting near zero emission fuels with zero CO2 emissions as a way forward to solve the emission problems. With its policies like Green Hydrogen Mission, government of India plans to accelerate the adoption of Hydrogen as a fuel in the country. These initiatives have created a breakthrough in development of Hydrogen ICEs by the Indian OEM’s. Hydrogen ICE have only NOx emissions as the most prominent engine out emissions. NOx emission in Hydrogen engines is very sensitive to operating lambda, where in, after a certain threshold lambda the emissions rise significantly. Therefore, the air management system plays a very important role in the hydrogen engine performance & NOx emissions. This study evaluates various air management system options for a heavy-duty Hydrogen engine.
Technical Paper

Simulating a V2G Concept for Optimized EV Fleet Charging in India

2024-01-16
2024-26-0101
Road transport is bound to play a major role in the imminent transition to green energy. India has pledged to reach net-zero greenhouse gas emissions by 2070 at the COP26 [1] and is committed to have 30% electric vehicle (EV) sales by 2030 [2]. The Indian government is promoting fleet electrification through initiatives like FAME–II. India’s EV market is expected to grow at an annual rate of 90% between 2022 and 2030 [3]. With this projection combined with climate targets, comes an anticipated exponential rise in renewable energy contribution to the national power grid, accompanied by a huge transport-related demand for electricity. NITI Aayog – India’s public policy think tank – and the Ministry of Power are already looking into the expansion of EV charging infrastructure in India as part of smart grid implementation. The deployment of Vehicle-to-Grid (V2G) technology as an extension of the smart charging initiative is essential for a smooth transition to renewable energy.
Technical Paper

Advance Thermal Management System for Electric Vehicle – An Indian Case Study

2024-01-16
2024-26-0126
Climate change and global warming are one of the major challenges faced by the world today. A significant number of Indian cities rank among the most polluted globally, with vehicular emissions being the primary contributor. To address this issue, the Government of India is actively advocating for the adoption of zero-emission vehicles such as electric vehicles through policies and initiatives like FAME II [1], PMP and the National Mission for Transformative Mobility and Storage. The acceptance of electric vehicles is growing in the Indian market seeing more than 200% increase in sales in the year 2022 compared to 2021 with a large share of 2-wheelers, 3-wheelers and compact cars getting electrified. Further adoption of electrification on a much larger scale currently faces the major challenge of high overall vehicle cost compared to conventional vehicles, with the major contribution coming from the HV battery which is the costliest system on the electric vehicles.
Technical Paper

Application of 48V Mild-Hybrid Technology for Meeting GHG and Low NOx Emission Regulations for MHD Vehicles

2023-04-11
2023-01-0484
Vehicle OEM’s for MHD applications are facing significant challenges in meeting the stringent 2027 low-NOx and GHG emissions regulations. To meet such challenges, advanced engine and aftertreatment technologies along with powertrain electrification are being applied to achieve robust solutions. FEV has previously conducted model-based assessments to show the potential of 48V engine and aftertreatment technologies to simultaneously meet GHG and low NOx emission standards. This study focuses on evaluating the full potential of 48V electrification technology through addition of 48V P3 hybrid system to the previously developed 48V advanced engine and aftertreatment technology package. Previously, a model-based approach was utilized for selection and sizing of a 48V system-enabled engine and aftertreatment package for class 6-7 MHD application.
Technical Paper

Evaluation of 48V Technologies to Meet Future CO2 and Low NOx Emission Regulations for Medium Heavy-Duty Diesel Engines

2022-03-29
2022-01-0555
The Environmental Protection Agency (EPA) and California Air Resources Board (CARB) have recently announced rulemakings focused on tighter emission limits for oxides of nitrogen (NOx) from heavy-duty trucks. As part of the new rulemaking CARB has proposed a Low Load Cycle (LLC) to specifically evaluate NOx emission performance over real-world urban and vocational operation typically characterized by low engine loads, thereby demanding the implementation of continuous active thermal management of the engine and aftertreatment system. This significant drop in NOx levels along with continued reduction in the Green House Gas (GHG) limits poses a more significant challenge for the engine developer as the conventional emission reduction approaches for one species will likely result in an undesirable increase in the other species.
Technical Paper

Case Study on Gasoline Electric Range Extender as a Powertrain Solution for Small Commercial Goods and Passenger Carrier Vehicles in India

2021-09-22
2021-26-0158
Climate change is a global phenomenon now and countries across the globe are working towards reducing emissions by bringing in stricter legislations on emissions and CO2. India is also facing huge challenges on pollutions in large cities. Reports suggest that 7 of the 10 most polluted cities of the world lie in India. The growing public opinion towards cleaner air and reduced greenhouse gaseous emissions has sensitized the matter and has led to drafting of strict emission legislations in India during the past few years. The leap frogging from BS 4 to BS 6 in 2020 by skipping BS 5 norms showed the intent of the GOI towards emission reduction. The BS 6 legislation is not limiting to meeting norms with legislative emission cycle but will also focus from year 2023 onto real driving emissions on actual roads. GOI is also proposing to implement fleet CO2 emission norms (CAFÉ) by 2022 to regulate the CO2 emissions.
Technical Paper

Engine Friction Optimization Approach using Multibody Simulations

2021-09-22
2021-26-0409
From April 2020 BS 6 phase 1 legislation has come into place in India. Further in the coming years from 2022 CAFÉ norms will be implemented targeting 122 g/km CO2 fleet emissions. Also, from year 2023 onwards BS 6 phase 2 emission legislation with RDE cycle will be in place. With the expensive exhaust after-treatment system needed for meeting BS 6 norms, the Diesel powertrain based vehicles cost has increased further creating even further price difference to it’s Gasoline fuel variants. Additionally, the price difference between Diesel and Gasoline fuel is always reducing. These reasons have changed the buying pattern of passenger cars in India, with vehicle powered by engine<1.5 L displacements have gradually shifted predominantly to Gasoline powertrain. The impact of this will further stress the fleet CO2 emissions for manufacturers.
Journal Article

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

EGR Mixer Optimization for Achieving Uniform Cylinder EGR Distribution Using 1D-3D CFD Coupled Simulation Approach to Meet Future Stage V Emission Legislation in India

2020-09-25
2020-28-0390
Vehicles are one of the main sources of pollution in India, which produce substantial amount of pollutants. Gaseous pollutants are reason for major health problems; hence emission legislations are becoming increasingly stringent all over the world. India is also following the global trend of migrating in the Off-highway segment from Trem IIIA to Stage V legislation by 2024. This legislation change is calling for technological upgrade of all existing engines. EGR has been successfully proved as a useful technology to reduce NOx by decreasing the oxygen concentration and the peak temperature of the combustion. Due to compact design and space restriction, the distance required for the homogeneous mixing of fresh air and EGR is not enough. Therefore, the mixing of the EGR and distribution of the EGR over the cylinders may not be equal.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Optimized Exhaust After-Treatment System Solution for Indian Heavy Duty City Bus Application - The Challenges Involved and the Right Approach to Meet Future BS VI Emission Legislations and Real World Driving Emissions

2019-01-09
2019-26-0139
The vehicular pollution and emission levels are alarmingly increasing in India. The metro and urban cities are worst hit by the gaseous and particulate emissions produced by internal combustion engine powered vehicles. Following the trend from other developed countries, Government of India (GOI) has decided to migrate from existing BS IV legislation directly to BS VI legislation from April 2020 all across India. This migration in emission legislation took almost 10 years to be implemented in European Union (EU) countries. However, for India, the targeted implementation time is just 3 years, making it an uphill challenge for all the vehicle manufacturers. City bus is one such applications, which run mostly within the city and currently are powered by conventional Diesel engines. The vehicle manufacturers should focus on finding an optimized solution for meeting the future emission legislation in true sense.
Technical Paper

Optimized Electrification Solution for App-Based Taxis in Indian Cities

2019-01-09
2019-26-0129
The transportation needs in highly dense urban pockets is leading to high pollution islands in India. To address this issue, the emission legislations are becoming more stringent with an aim to reduce the emissions at national level. App based taxis are becoming lifeline for all major Indian cities. So far, these taxis are predominantly diesel powered compact cars. Thus, vehicle powertrain electrification is a good idea to improve local air quality in such urban pockets. While upgradation of internal combustion engines will add significant costs due to expensive exhaust after-treatment systems, electric motor driven taxis can be the ideal solution for emission reduction, as their operation is completely free of local pollutant emissions. However, the currently available electric vehicles are more expensive than the internal combustion engine powered counterparts.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
Technical Paper

Bharat Stage-V Solutions for Agricultural Engines for India Market

2019-01-09
2019-26-0148
The Bharat Stage (CEV/Tractor) IV & V emission legislations will come into force in Oct 2020 & Apr 2024 respectively, posing a major engineering challenge in terms of system complexity, reliability, costs and development time. Solutions for the EU Stage-V NRMM legislation in Europe, from which the BS-V limits are derived, have been developed and are ready for implementation. To a certain extent these European solutions can be transferred to the Indian market. However, certain market-specific challenges are yet to be defined and addressed. In addition, a challenging timeline has to be considered for application of advanced technologies and processes during the product development. In this presentation, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the after treatment components.
Journal Article

Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines

2018-04-03
2018-01-1429
When considered along with Phase 2 Greenhouse Gas (GHG) requirements, the proposed Air Resource Board (ARB) nitrogen oxide (NOx) emission limit of 0.02 g/bhp-hr will be very challenging to achieve as the trade-off between fuel consumption and NOx emissions is not favorable. To meet any future ultra-low NOx emission regulation, the NOx conversion efficiency during the cold start of the emission test cycles needs to be improved. In such a scenario, apart from changes in aftertreatment layout and formulation, additional heating measures will be required. In this article, a physics-based model for an advanced aftertreatment system comprising of a diesel oxidation catalyst (DOC), an SCR-catalyzed diesel particulate filter (SDPF), a stand-alone selective catalytic reduction (SCR), and an ammonia slip catalyst (ASC) was calibrated against experimental data.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
X