Refine Your Search

Topic

Search Results

Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Influence of Object Properties on Reaching and Grasping Tasks

2008-06-17
2008-01-1905
This paper investigates how reaching and grasping are affected by various object properties and conditions. While previous studies have examined the effect of object attributes such as size, shape, and distance from the subject, there is a need for quantitative models of finger motions. To accomplish this, the experiment was performed with six subjects where the 3D-coordinates of the finger joints and the wrist of one hand were recorded during reaching and grasping tasks. Finger joint angles at final posture were found to depend on both object size and orientation while wrist postures were changed primarily depending on object orientation. Also, each object orientation caused alteration in relative object location with respect to the hand at final posture. In addition, analysis of temporal variables revealed that it took from 1.06 to 1.30 seconds depending on the object distance to start reaching and complete grasping of the object.
Technical Paper

Dynamic Hand Space Envelope during Reaching and Grasping

2008-06-17
2008-01-1918
The objective of this paper is to investigate the dynamic space envelope during reaching and grasping tasks. Some amount of space is required for the hand and arm to move without interference in reach-to-grasp tasks. The required space (‘dynamic space envelope’) has not been examined in spite of its importance. In this paper, we tested the hypothesis that the dynamic space envelope is a function of object size, hand size, grip type and distance. Six subjects (5 males, 1 female) participated in an experiment, in which they reached for and grasped three differently sized cylindrical objects (D: 26 mm, 60 mm, 114 mm) placed 40 cm in front of the subjects. Twenty-three markers were attached to the dorsal side of the hand and a 3-D motion capture system recorded the positions of the markers during reaching and grasping. The total distance from start to end positions is evenly divided into 10 ranges, and the areas of the required spaces were calculated for each range.
Technical Paper

Examination of a Collision Detection Algorithm for Predicting Grip Posture of Small to Large Cylindrical Handles

2006-07-04
2006-01-2328
A 3-dimensional kinematic model for predicting grip posture was developed. The finger joints are all rotated at a constant rate until contact is detected between the fingers and the work object. By comparing the model’s predicted hand postures with experimental data, it was shown that the model gave reasonable predictions (R2=0.72). The model predicts MCP (Metacarpophalangeal) and PIP (Proximal Interphalangeal) joint angles better than it predicts DIP (Distal Interphalangeal) joint angles. A sensitivity study using this model was performed. The hand length, hand breadth, object size and skin deformation level were changed and the effects of these factors on hand posture was examined. The hand length, hand breadth and skin deformation level do not seem to affect hand posture much. But the change in object size affects hand posture much more than other factors.
Technical Paper

Biomechanical Tolerance of the Cranium

1994-09-01
941727
The objective of the study was to investigate the biomechanical response of the intact cranium. Unembalmed human cadavers were used in the study. The specimens were transected at the base of the skull leaving the intracranial contents intact; x-ray and computed tomography (CT) scans were obtained. They were fixed in a specially designed frame at the auditory meatus level and placed on the platform of an electrohydraulic testing device via a six-axis load cell. Following radiography, quasistatic loading to failure was applied to one of the following sites: frontal, vertex, parietal, temporal, or occipital. Retroreflective targets were placed in two mutually orthogonal planes to record the localized temporal kinematics. Applied load and piston displacement, and the output generalized force (and moment) histories were recorded using a modular digital data acquisition system. After the test, x-ray and CT images were obtained, and defleshing was done.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

Trauma to Children in Forward-Facing Car Seats

1993-11-01
933095
One of the leading causes of death and disability among young children is motor vehicle accidents. Although current child restraint systems (car seats) have significantly reduced mortality and morbidity, deaths and injuries still occur. Since it is not possible to correlate human child injury potential with the biomechanical devices used for high level impact testing using experimental methods, the acquisition and analysis of specific child injury data identifiable with real world automobile crashes is critical for input to biomechanical research, anthropometric test device (ATD) development and safety standard revisions. The purpose of this study was to analyze vehicular-related trauma that had occurred to children in known crash environments based on accident configuration and car seat design.
Technical Paper

Accident Investigation and Impairment Study of Lower Extremity Injury

1993-03-01
930096
The automotive safety community has grown increasingly aware of the societal costs of injury impairment and disability resulting from automobile accidents. A significant portion of this impairment can be attributed to lower extremity trauma. An accident data study was conducted to determine lower extremity injury frequencies and mechanisms for restrained front-seat occupants in frontal collisions. A query of the 1988-1990 NASS (National Accident Sampling System) data provided information on pelvis, femur, knee, leg, and ankle and foot injuries. Age, gender, seating position, and delta-V were examined for their effect on the data. Lower extremity injury data were compared with injury data of similar severity (AIS ≥ 2) for the head, chest, thorax, and abdomen. The NASS data was supplemented with injury impairment information which, combined with anthropomorphic and biomechanical data, provides a prioritization scheme for the design of dummy lower extremities and instrumentation.
Technical Paper

Adult Occupant Injuries of the Lower Limb

1986-10-01
861927
Lower limb injuries among motor vehicle occupants are relatively common and are one of the principle causes of permanent disability. The author has reviewed the current literature and his own experience as an orthopaedic surgeon and research accident investigator concerning lower limb injuries among motor vehicle occupants. An unreported series of knee, thigh, hip, pelvis injuries with indepth accident investigation is reported. Incidence rates for specific injury diagnoses are not available. Gross tabulations reveal that lower limb injury is second only to head injury in frequency among injured motor vehicle occupants. Lower limb injuries are possibly the commonest cause of permanent disability and impairment resulting from motor vehicle accidents.
Technical Paper

Evaluating Safety Regulations, Then and Now

1984-04-01
840907
The FMVSS were established to provide the public with uniform safety equipment and design standards based on sound research. Ongoing evaluation is essential to maintain the effectiveness and safety of FMVSS and to ensure that current technology is incorporated in standards development. Serious injury (AIS 3 or greater) reporting by NASS should be upgraded to facilitate standards evaluation and development. Although cost effectiveness is a mandated criteria for standards evaluation, the protection of human life and limb must remain the principle criteria for measuring effectiveness. A citizen's advisory panel, similar to the NMVSAC should be established to assist NHTSA in establishing priorities for standards evaluation, development and promulgation.
Technical Paper

Impact Protection in Air Transport Passenger Seat Design

1982-02-01
821391
Knowledge of human impact tolerance(s) is a basic consideration in the improved design of air transport seat-restraint systems and occupant crash protection. This paper discusses biological factors which influence tolerance, defines tolerance levels, variables including whole body and regional impact, and effect of seat and body orientation. It is concluded that the ultimate inertial forces on the occupant specified in FAR 25.561 are not based upon human tolerance considerations; that human impact survival is estimated to be four to ten times the voluntary levels cited; that improved occupant protection requires dynamically tested structural improvements: and that currently available technology such as the NASA air transport seat, or rear-facing seats, should be utilized.
Technical Paper

Biomechanical Evaluation of Steering Wheel Design

1982-02-01
820478
In a crash, impact against the steering assembly can be a major cause of serious and fatal injury to drivers. But the interrelationship between injury protection and factors of surface area, configuration, padding, relative position of the spokes, and number and stiffness of spokes and rim is not clear. This paper reports a series of high-G sled tests conducted with anesthetized animal subjects in 30 mph impacts at 30 G peaks. A total of eight tests were conducted, five utilizing pig subjects, one a female chimpanzee, one an anthropomorphic dummy, and one test with no subject. Instrumentation included closed circuit TV, a tri-axial load cell mounted between the steering wheel and column, seat belt load measurement, six Photo-Sonics 1000 fps motion picture cameras, and poloroid photography. Medical monitoring pre, during and post-impact was followed by gross and microscopic tissue examination.
Technical Paper

Driver Body Size Considerations in Future U. S. Heavy Truck Interior Cab Design

1981-02-01
810218
Accurate data on the body dimensions of truck drivers are needed and such data are not presently available. This paper provides basic source data and an anthropometrical overview of the usefulness and limitations of existing data bases; discusses the influence of population factors, including age, sex, and demographic variables; and reviews population sampling problems. Heavy truck drivers as a whole appear to represent a physically different population from that of either the U.S. general population or other professional groups. Future anthropometric surveys must provide information for improved accommodation for the increasing range of physical size of users, and for obtaining data more useful to engineers involved in heavy truck interior cab design.
Technical Paper

Cervical Fractures and Fracture-Dislocations Sustained without Head Impact*

1979-02-01
790132
Because of its flexibility and structure, the cervical spine is disposed to various mechanisms of injury: although not so common as injuries caused by head impacts, cervical fractures and/or fracture-dislocations have been reported without direct impact to the head. Some cervical injuries reported have been sustained by wearers of lap and shoulder belts in auto accidents; however, we do not consider belt use a potential hazard because ample evidence has accrued in the medical and engineering literature to document general injury and fatality reduction by use of seatbelts. We believe that in many instances occupants would be more seriously injured or killed were belts not worn. The present paper reviews reports of cervical injuries without head impact found in the literature and case histories of such injuries from the Highway Safety Research Institute of The University of Michigan, as well as experimental studies in animals, cadavers, and volunteer subjects.
Technical Paper

Soft Tissue Injuries of the Neck

1979-02-01
790135
Whiplash is a poorly defined term including ligamentous and muscle strains, hematomas, disc injuries, and less frequently, brain, eye and ear injuries. Diagnosis is difficult because clinical signs and Xrays, electromyography and electroencephalography findings are few. Protection and rest will cure most patients within a year but approximately 2/5th of patients have permanent symptoms and disability. Rear-end impact accidents cause the head and neck to hyperextend over the seat back. Whiplash occurs in 38% of exposed occupants. Head rests give protection but differential rebound may occur producing injurious hyperextension and whiplash. The larynx, trachea and esophagus, in front of the spine, are injured by impact against the dash or steering wheel. Airway obstruction may occur and cause death if not restored quickly. Permanent disability can occur because of scarring and partial airway or esophageal obstruction or vocal cord damage.
Technical Paper

Biomechanical Analysis of Swimming Pool Neck Injuries

1979-02-01
790137
This paper presents an analysis of 67 neck injuries incurred in diving and sliding accidents in swimming pools. The accidents were investigated to establish the appropriate medical and mechanical factors involved. A mathematical model was developed to allow the prediction of the trajectory and velocity of the subjects prior to their injury. Nine of the accidents were selected for real life simulation. The simulation included the selection of test subjects of similar physical build to the accident victims who then performed the maneuvers leading to the injury, but in deeper water. High speed movies (200 frames per second) were taken, above and below the water, to measure the motion. A frame by frame analysis provided data to determine the trajectory and velocity profiles of the test subject. The maneuvers studied included diving from the pool edge, diving from various board types and sliding down various sliding board configurations.
Technical Paper

Crashworthiness Analysis of Field Investigation of Business Aircraft Accidents

1979-02-01
790587
Business and executive aviation represent a combined total of over 40% of the general aviation fleet, but (1977) accounted for only 8.37% of all general aviation accidents recorded. During the period 1964-1977 some 7,351 aircraft engaged in business flying, and 883 in corporate/executive operations, were involved in accidents reported by the NTSB. These accidents were reviewed utilizing the University of Michigan Computerized Accident Files to provide an overall view of the incidence and nature of business/executive aircraft accidents relative to occupant crash injuries. In addition more detailed case studies of selected accidents investigated including a Lear Jet 25B, Cessna 421, Beech Volpar Model 18, and Ted Smith Aerostar 601, are provided to illustrate specific types of crashworthiness, occupant protection, or post-crash emergency egress findings applicable to business/executive operations. Post-crash fire was reported in 29 cases (16.3%) during the 3-year period (1975-1977).
Technical Paper

General Aviation Crash Survivability

1978-02-01
780017
Statistics indicate that during the past decade (1967-1976) the number of general aviation aircraft involved in an accident is equivalent to at least 38% of the total U.S. production during that period. Estimates that an aircraft will be involved in an accident over a 20 year life range are as high as 60-70%. Recognition of this probability has led to crashworthiness and occupant survivability “packaging” design concepts as offering the most realistic approach to reduction of serious and fatal injuries when an accident occurs. This paper reviews and illustrates current general aviation aircraft accident experience relative to occupant impact injury and damage indexes, and provides new data relative to current-generation aircraft.
Technical Paper

Study of Human Impact Tolerance Using Investigations and Simulations of Free-Falls

1977-02-01
770915
A study of free-fall accidents and resulting injuries was conducted to determine how useful these types of data could be in establishing human injury tolerance limits. “Tolerance” was examined primarily for children at two levels - reversible injury and threat to survival. The specific objectives were to investigate specific free-falls in sufficient depth to permit biomedical or mathematical reconstruction of the fall, simulate selected free-falls to estimate impact response, and compare predicted responses with observed injuries as a means of estimating human tolerance levels. From more than 2100 reported free-falls, 110 were investigated on-site. Seven head-first and three feet-first falls were then simulated using the MVMA 2-D Crash Victim Simulator. Newspaper reports of free-falls showed that males fell six times as often as females and most often while at work. Children fell from windows and balconies more often than from any other hazard.
Technical Paper

Civil Aircraft Restraint Systems: State-of-the-Art Evaluation of Standards, Experimental Data, and Accident Experience

1977-02-01
770154
The importance of crashworthiness and the role of restraint systems in occupant impact protection in U.S. civil aircraft design is being increasingly recognized. Current estimates of the number of fatalities which could be prevented annually in survivable accidents range from 33 to 94%. This study reviews the development of existing Federal Aviation Administration restraint system standards from the first requirement for safety belts in the Air Commerce Regulations of 1926 to present 14 CFR 1.1. The FAA and industry standards are critically evaluated for Parts 23 (small airplanes), 25 (air transports), 27 (rotorcraft), and 29 (transport category rotorcraft). State-of-the-art developments, including an overview of previous accident experience, results of experimental studies, comparison with other standards, and primary data sources are provided.
X