Refine Your Search

Topic

Search Results

Technical Paper

Utilization of a Twin Scroll Radial Centripetal Turbine Model

2019-04-02
2019-01-0191
The article describes the utilization of the map-less approach in simulation of single and twin scroll radial turbines. The conventional steady flow maps are not used. An unsteady 1-D model of a twin scroll turbine includes scrolls, mixing of flows upstream of the impeller, turbine wheel, leakages and outlet pipe. Developed physical turbine model was calibrated with data from experiments at specific steady flow turbocharger test bed with open loop, which enables to achieve arbitrary level of an impeller admission via throttling in separate sections. A selected twin scroll turbine was tested under full, partial flow admission of an impeller and extreme partial admission with closed section. The required number of operating points is relatively low compared with conventional steady flow maps, when the maps have to be generated for each level of an impeller admission. The calibration process of the full 1-D turbine model is described.
Technical Paper

Development of a Pre-Chamber Ignition System for Light Duty Truck Engine

2018-04-03
2018-01-1147
In this article the development of a combustion system with a fuel-scavenged pre-chamber is described. Such a system is commonly used in large-bore engines operated with extremely lean mixtures. The authors implemented the scavenged pre-chamber into a light duty truck-size engine with a bore of 102 mm. The lean burn strategy is intended to achieve very low nitrogen oxide (NOx) emissions at low load. At full load a stoichiometric mixture strategy is applied to achieve sufficient power density while simultaneously enabling the use of a relatively simple three-way catalytic converter for exhaust gas aftertreatment. This work outlines the pre-chamber design features and introduces the results of an experimental investigation of the effect of pre-chamber ignition on a single cylinder testing engine.
Technical Paper

Thermodynamic Potential of Electrical Turbocharging for the Case of Small Passenger Car ICE under Steady Operation

2017-03-28
2017-01-0526
The proposed paper deals with thermodynamic optimization of highly flexible ICE (variable compression ratio, intake/exhaust VVA) while comparing e-turbocharging concept with classical one. The e-turbocharging approach is based on idea that compressor/turbine has its own electric machine (motor/generator) and that additional electric energy can be supplied/attached from/to engine crank train. Hence it allows independent control of compressor/turbine. On the other hand, classical approach is based on a standard mechanical connection between turbine and compressor. The whole system (flexible engine + boost device) is optimized under steady operation – low load (BMEP of 4 bar), medium load (BMEP of 13 bar), high load (BMEP of 30, 25 and 18 bar) and maximum load are considered. Moreover, 3 combustion concepts are considered – classical SI and CI, and ideal RCCI. Sensitivity study of selected parameters is performed: e.g., efficiency of electric machine(s), HP exhaust manifold volume.
Technical Paper

Dual Fuel Combustion Model for a Large Low-Speed 2-Stroke Engine

2016-04-05
2016-01-0770
A quasi-dimensional dual fuel combustion model is proposed for a large 2-stroke marine engine. The introduced concept accounts for both diffusion combustion of the liquid pilot fuel and the flame front propagation throughout the gaseous premixed charge. For the pilot fuel case a common integral formulation defines the ignition delay whereas a time scale approach is incorporated for the combustion progress modeling. In order to capture spatial differences given by the scavenging process and the admission of the gaseous fuel, the cylinder volume is discretized into a number of zones. The laws of conservation are applied to calculate the thermodynamic conditions and the fuel concentration distribution. Subsequently, the ignition delay of the gaseous fuel-air mixture is determined by the use of tabulated kinetics and the ensuing oxidation is described by a flame velocity correlation.
Technical Paper

Dynamic Optimization of the E-Vehicle Route Profile

2016-04-05
2016-01-0156
Current vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and larger fleets. Thanks to mechatronic design of vehicles and their components and availability of high capacity data connection with computational centers (clouds), there are many means to optimize their performance, both by planning prior the trip and recalculations during the route. Although many aspects of this opportunity were already addressed, the paper shows an approach developed to further increase the range of e-vehicle operation. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route, vehicle and dynamic optimization. The most important part of the procedure is performed in the cloud, using both computational power and rich information resources.
Technical Paper

Combining Thermodynamics and Design Optimization for Finding ICE Downsizing Limits

2014-04-01
2014-01-1098
The mass and overall dimensions of massively downsized engines for very high bmep (up to 35 bar) cannot be estimated by scaling of designs already available. Simulation methods coupling different levels of method profoundness, as 1-D methods, e.g., GT Suite/GT Power with in-house codes for engine mechanical efficiency assessment and preliminary design of boosting devices (a virtual compressor and a turbine), were used together with optimization codes based on genetic algorithms. Simultaneously, the impact of optimum cycle on cranktrain components dimensions (especially cylinder bore spacing), mass and inertia force loads were estimated since the results were systematically stored and analyzed in Design Assistance System DASY, developed by the authors for purposes of early-stage conceptual design. General thermodynamic cycles were defined by limiting parameters (bmep, burning duration, engine speed and turbocharger efficiency only).
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
Technical Paper

Design Assistance System and Its Application

2012-04-16
2012-01-0916
This article presents results of the Design Assistance System (DASY, will be referred to as a tool in this paper) development and examples of its application for engine concept modeling. The software tool for creating and maintaining knowledge database is being developed at the Czech Technical University in Prague. This tool is targeted to simplify and speed up the concept design process. The targets were met by providing the high level of flexibility along with a simple user interface. Two examples that show interaction of this tool with computer-aided design (CAD) and computer-aided engineering (CAE) software are presented. One example includes an optimization using implemented genetic algorithm. By using this tool, one can create templates for conserving the knowledge acquired during engine design in the past. It provides hints for the future design tasks by offering a data of similar designs, based on experiments and simulations at different levels of complexity and profoundness.
Technical Paper

Investigation of Radial Turbocharger Turbine Characteristics under Real Conditions

2009-04-20
2009-01-0311
The paper deals with investigation of flow characteristics of turbocharger turbine under real operating conditions on engine by means of combination of experimental data and advanced 1-D code for combustion engine simulation. Coupling simulations tools with the results of measurements provides the engineers with data which are difficult or impossible to measure. For instance by means of a three pressure analysis (TPA) applicable on engine cylinder the engineers can obtain burn rate, valve flow and residual gas compound from measured pressure traces in cylinder and at inlet and outlet ports. A method for turbocharger turbine on engine identification similar in principle to the three pressure analysis has been applied on radial turbine with variable geometry. A new computational module has been developed to allow identification of instantaneous flow and efficiency characteristics of the turbine.
Technical Paper

Simulation of Pulsating Flow Unsteady Operation of a Turbocharger Radial Turbine

2008-04-14
2008-01-0295
The aim of the current contribution is to develop a tool for the improvement of accuracy of turbocharger turbine simulation during matching of a turbocharger to an engine. The paper demonstrates the possibility of unsteady turbine simulation in pulsating flow caused by an internal combustion engine using the basic modules of generalized 1-D manifold solver with entities (pipes, channels) under centrifugal acceleration in general direction and under non-uniform angular speed, which has not yet been explored. The developed model extrapolates steady operation turbine maps by this way. It uses 1-D model parameters identified from steady flow experiments. Unlike the lumped-parameter standard models of turbocharger turbines, the model takes into account complete 1-D features of a turbine flow path including arbitrary shape of turbine impeller vanes.
Technical Paper

Multilevel Predictive Models of IC Engine for Model Predictive Control Implementation

2008-04-14
2008-01-0209
The paper deals with model based predictive control of combustion engines. Nonlinear black-box predictive models based on neuro-fuzzy approach are utilized. The structure of the models is optimized within an identification process. The nonlinear models are locally linearized and consequently used for the efficient on-line computation of forthcoming control actions. In desire to respect a fact that the speed of input-output response may vary significantly for different input/output groups, multilevel predictive models are proposed. Predictive control is again applied to approximate the desired behavior of chosen output variables. Potential algebraical constraints between different prediction layers are involved in the control algorithm using quadratic programming. The control scheme is optimized using simplified fast simulation model.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

Modeling of Sensor Performance During Engine Testing

2007-04-16
2007-01-1299
The paper deals with the investigation of pressure, flow and temperature sensor performance under unsteady conditions using advanced 1-D codes for simulation of engine operation. Approach of internal combustion engine (ICE) sensor modeling in an engine simulation code is described. Some new external modules have been developed to couple engine-and-pipe model to sensors. Sensor dynamic and engine dynamic effects are separated by combining a sensor model with an engine model. The models were tuned to match real data with the goal of uncovering the transfer function between the measured signal and the actual signal. Procedure for estimation of the in-cylinder pressure pattern from distorted pattern at sensor location using empirical transfer function is presented. The developed model seems to have a wide application, e.g. for investigation of dynamical characteristics of lambda sensors or gas analyzer probes.
Technical Paper

Transient Engine Model as a Tool for Predictive Control

2006-04-03
2006-01-0659
The paper describes the tool of ICE transient response simulation suitable for incorporation into a predictive engine controller. The model is simplified, thus enhancing the simulation speed but keeping its predictive capability at a reasonable level. The main modules of a code suitable for the near-real-time simulation of engine thermodynamics are described in the paper. They include engine cylinder (incl. simplified pressure trace prediction), fuel injection system, main controllers, both inlet and exhaust manifolds, turbocharger and engine dynamics. The laws of conservation are used to describe any of the thermodynamic/hydrodynamic modules of a model. The method of algebraic re-construction of a pressure trace inside a cylinder has been developed and tested for prediction of engine speed variation. The modular structure of a model allows for the implementation of the current operating principles of ICEs.
Technical Paper

Fuel Injection Process Computations Using the Eulerian Multidimensional Model

2005-04-11
2005-01-1243
Diesel fuel injection process calculations have been performed by means of in-house developed mathematical models. An Eulerian multidimensional code for in-cylinder two-phase flow computations is used in conjunction with a hydrodynamic one-dimensional model of a fuel injection system. The multidimensional model comprehends all basic processes, which play a role in spray formation. The compressible gaseous flow with transport of species is solved together with the flow of dispersed liquid phase using the Eulerian reference frame for both phases. The two-way coupling between the phases in mass, momentum, and energy balances is considered. A detailed description of liquid phase is present, taking into account drop size distribution in terms of the multi-continua approach. The hydrodynamic model capable of simulating common fuel injection systems is used for the rate-of-injection computations to provide realistic boundary conditions to the spray model.
Technical Paper

Eulerian Multidimensional Model for Computing the Fuel Sprays

2004-03-08
2004-01-0537
An Eulerian multidimensional model has been developed for computing the behavior of fuel sprays in direct injection internal combustion engines. The model involves a description of all basic processes that take place in two-phase flow with inter-phase exchanges of mass, momentum, and energy. Both the multi-component compressible gas-phase flow as well as the droplet-phase flow equations are solved in Eulerian coordinates. Basic laws of conservation are formulated on finite volumes with arbitrarily movable boundaries to facilitate the modeling of movable boundary problems. The model features a detailed description of droplet-phase accounting for droplet mass change due to evaporation and with possibility of incorporation of potential droplet breakup, collisions, and coalescence. The application chosen to demonstrate the predictive capabilities of the developed model is the injection of hollow-cone spray into high-density air in a cylindrical chamber with moving boundary.
Technical Paper

Homogenization of Combustion in Cylinder of CI Engine Using Porous Medium

2003-03-03
2003-01-1085
The paper deals with the simulation of properties of IC engine equipped with a chemically inert porous media (PM) to homogenize and stabilize the combustion of CI engines. The purpose of the PM matrix use is to ensure reliable a ignition of lean mixture and to limit maximum in-cylinder temperature during combustion. It is aimed at NO formation reduction. The influence of PM on an engine cycle is examined by means of CFD simulations. Results demonstrating the influence of heat accumulation, heat supply during compression and expansion strokes and self-ignition properties of a fuel on the engine cycle are presented. All simulations involve modeling of NO formation. The homogenization capability and the flame stabilization one of the PM are discussed.
X