Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Structural-Acoustic Joints for Incompatible Models in the Energy Finite Element Analysis

2015-06-15
2015-01-2237
In the Energy Finite element Analysis (EFEA) method, the governing differential equations are formulated for an energy variable that has been spatially averaged over a wavelength and time averaged over a period. A finite element approach is used for solving the differential equations numerically. Therefore, a library of elements is necessary for modeling the various wave bearing domains that are present in a structural-acoustic system. Discontinuities between wave bearing domains always exist due to the geometry, from a change in material properties, from multiple components being connected together, or from different media interfacing with each other. Therefore, a library of joints is also necessary for modeling the various types of physical connections which can be encountered in a structural-acoustic system.
Technical Paper

Multidisciplinary Design Optimization of a Ground Vehicle Track for Durability and Survivability

2012-04-16
2012-01-0725
In this paper a Multi-Level System (MLS) optimization algorithm is presented and utilized for the multi-discipline design of a ground vehicle track. The MLS can guide the decision making process for designing a complex system where many alternatives and many mutually competing objectives and disciplines need to be considered and evaluated. Mathematical relationships between the design variables and the multiple discipline performance objectives are developed adaptively as the various design considerations are evaluated and as the design is being evolved. These relationships are employed for rewarding performance improvement during the decision making process by allocating more resources to the disciplines which exhibit the higher level of improvement. The track analysis demonstrates how a multi-discipline design approach can be pursued in ground vehicle applications.
Journal Article

Prediction of Automotive Side Swing Door Closing Effort

2009-04-20
2009-01-0084
The door closing effort is a quality issue concerning both automobile designers and customers. This paper describes an Excel based mathematical model for predicting the side door closing effort in terms of the required minimum energy or velocity, to close the door from a small open position when the check-link ceases to function. A simplified but comprehensive model is developed which includes the cabin pressure (air bind), seal compression, door weight, latch effort, and hinge friction effects. The flexibility of the door and car body is ignored. Because the model simplification introduces errors, we calibrate it using measured data. Calibration is also necessary because some input parameters are difficult to obtain directly. In this work, we provide the option to calibrate the hinge model, the latch model, the seal compression model, and the air bind model. The door weight effect is geometrically exact, and does not need calibration.
Journal Article

Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer

2008-04-14
2008-01-1217
The cathode gas diffusion layer (GDL) is an important component of polymer electrolyte membrane (PEM) fuel cell. Its design parameters, including thickness, porosity and permeability, significantly affect the reactant transport and water management, thus impacting the fuel cell performance. This paper presents an optimization study of the GDL design parameters with the objective of maximizing the current density under a given voltage. A two-dimensional single-phase PEM fuel cell model is used. A multivariable optimization problem is formed to maximize the current density at the cathode under a given electrode voltage with respect to the GDL parameters. In order to reduce the computational effort and find the global optimum among the potential multiple optima, a global metamodel of the actual CFD-based fuel cell simulation, is adaptively generated using radial basis function approximations.
Technical Paper

Combining Energy Boundary Element with Energy Finite Element Simulations for Vehicle Airborne Noise Predictions

2008-04-14
2008-01-0269
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

A Substructuring Formulation for the Energy Finite Element Analysis

2007-05-15
2007-01-2325
In applications of the Energy Finite Element Analysis (EFEA) there is an increasing need for developing comprehensive models with a large number of elements which include both structural and interior fluid elements, while certain parts of the structure are considered to be exposed to an external fluid loading. In order to accommodate efficient computations when using simulation models with a large number of elements, joints, and domains, a substructuring computational capability has been developed. The new algorithm is based on dividing the EFEA model into substructures with internal and interface degrees of freedom. The system of equations for each substructure is assembled and solved separately and the information is condensed to the interface degrees of freedom. The condensed systems of equations from each substructure are assembled in a reduced global system of equations. Once the global system of equations has been solved the solution for each substructure is pursued.
Technical Paper

A Time-Dependent Reliability Analysis Method using a Niching Genetic Algorithm

2007-04-16
2007-01-0548
A reliability analysis method is presented for time-dependent systems under uncertainty. A level-crossing problem is considered where the system fails if its maximum response exceeds a specified threshold. The proposed method uses a double-loop optimization algorithm. The inner loop calculates the maximum response in time for a given set of random variables, and transforms a time-dependent problem into a time-independent one. A time integration method is used to calculate the response at discrete times. For each sample function of the response random process, the maximum response is found using a global-local search method consisting of a genetic algorithm (GA), and a gradient-based optimizer. This dynamic response usually exhibits multiple peaks and crosses the allowable response level to form a set of complex limit states, which lead to multiple most probable points (MPPs).
Technical Paper

An Efficient Possibility-Based Design Optimization Method for a Combination of Interval and Random Variables

2007-04-16
2007-01-0553
Reliability-based design optimization accounts for variation. However, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. A crank-slider mechanism example demonstrates the accuracy and efficiency of the proposed sequential algorithm.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

2007-04-16
2007-01-1251
An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
Technical Paper

Design Optimization Under Uncertainty Using Evidence Theory

2006-04-03
2006-01-0388
Early in the engineering design cycle, it is difficult to quantify product reliability due to insufficient data or information to model uncertainties. Probability theory can not be therefore, used. Design decisions are usually, based on fuzzy information which is imprecise and incomplete. Recently, evidence theory has been proposed to handle uncertainty with limited information. In this paper, a computationally efficient design optimization method is proposed based on evidence theory, which can handle a mixture of epistemic and random uncertainties. It quickly identifies the vicinity of the optimal point and the active constraints by moving a hyper-ellipse in the original design space, using a reliability-based design optimization (RBDO) algorithm. Subsequently, a derivative-free optimizer calculates the evidence-based optimum, starting from the close-by RBDO optimum, considering only the identified active constraints.
Technical Paper

Metamodel Development Based on a Nonparametric Isotropic Covariance Estimator and Application in a V6 Engine

2004-03-08
2004-01-1142
This paper presents the utilization of alternative correlation functions in the Kriging method for generating surrogate models (metamodels) for the performance of the bearings in an internal combustion engine. Originally, in the Kriging method an anisotropic exponential covariance function is developed by selecting optimal correlation parameters through optimization. In this paper an alternative nonparametric isotropic covariance approach is employed instead for generating the correlation functions. In this manner the covariance for spatial data is evaluated in a more straightforward manner. The metamodels are developed based on results from a simulation solver computed at a limited number of sample points, which sample the design space.
Technical Paper

Oil Film Dynamic Characteristics for Journal Bearing Elastohydrodynamic Analysis Based on a Finite Difference Formulation

2003-05-05
2003-01-1669
A fast and accurate journal bearing elastohydrodynamic analysis is presented based on a finite difference formulation. The governing equations for the oil film pressure, stiffness and damping are solved using a finite difference approach. The oil film domain is discretized using a rectangular two-dimensional finite difference mesh. In this new formulation, it is not necessary to generate a global fluidity matrix similar to a finite element based solution. The finite difference equations are solved using a successive over relaxation (SOR) algorithm. The concept of “Influence Zone,” for computing the dynamic characteristics is introduced. The SOR algorithm and the “Influence Zone” concept significantly improve the computational efficiency without loss of accuracy. The new algorithms are validated with numerical results from the literature and their numerical efficiency is demonstrated.
Technical Paper

Structural Vibration of an Engine Block and a Rotating Crankshaft Coupled Through Elastohydrodynamic Bearings

2003-05-05
2003-01-1724
A comprehensive formulation is presented for the dynamics of a rotating flexible crankshaft coupled with the dynamics of an engine block through a finite difference elastohydrodynamic main bearing lubrication algorithm. The coupling is based on detailed equilibrium conditions at the bearings. The component mode synthesis is employed for modeling the crankshaft and block dynamic behavior. A specialized algorithm for coupling the rigid and flexible body dynamics of the crankshaft within the framework of the component mode synthesis has been developed. A finite difference lubrication algorithm is used for computing the oil film elastohydrodynamic characteristics. A computationally accurate and efficient mapping algorithm has been developed for transferring information between a high - density computational grid for the elastohydrodynamic bearing solver and a low - density structural grid utilized in computing the crankshaft and block structural dynamic response.
Technical Paper

Probabilistic Analysis for the Performance Characteristics of Engine Bearings due to Variability in Bearing Properties

2003-05-05
2003-01-1733
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine without performing time consuming analyses. The metamodels are developed based on results from actual simulation solvers computed at a limited number of sample points, which sample the design space. A finite difference bearing solver is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric Latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space. The development of the metamodels is validated by comparing results from the metamodels with results from the actual bearing performance solver over a large number of evaluation points. Once the metamodels are established they are employed for performing probabilistic analyses.
Technical Paper

Accounting for Manufacturing Variability in Interior Noise Computations

2001-04-30
2001-01-1527
A formulation that accounts for manufacturing variability in the analysis of structural/acoustic systems is presented. The methodology incorporates the concept of fast probability integration with finite element (FEA) and boundary element analysis (BEA) for producing the probabilistic acoustic response of a structural/acoustic system. The advanced mean value method is used for integrating the system probability density function. FEA and BEA are combined for producing the acoustic response that constitutes the performance function. The probabilistic acoustic response is calculated in terms of a cumulative distribution function. The new methodology is used to illustrate the difference between the results from a probabilistic analysis that accounts for manufacturing uncertainty, and an equivalent deterministic simulation through applications. The probabilistic computations are validated by comparison to Monte Carlo simulations.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
X