Refine Your Search

Topic

Search Results

Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Journal Article

Battery Selection and Optimal Energy Management for a Range-Extended Electric Delivery Truck

2022-09-16
2022-24-0009
Delivery trucks and vans represent a growing transportation segment which reflects the shift of consumers towards on-line shopping and on-demand delivery. Therefore, electrification of this class of vehicles is going to play a major role in the decarbonization of the transportation sector and in the transition to a sustainable mobility system. Hybrid electric vehicles can represent a medium-term solution and have gained an increasing share of the market in recent years. These vehicles include two power sources, typically an internal combustion engine and a battery, which gives more degrees of freedom when controlling the powertrain to satisfy the power request at the wheels. Components sizing and powertrain energy management are strongly coupled and can make a substantial impact on the final energy consumption of a hybrid vehicle.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Journal Article

In-Vehicle Test Results for Advanced Propulsion and Vehicle System Controls Using Connected and Automated Vehicle Information

2021-04-06
2021-01-0430
A key enabler to maximizing the benefits from advanced powertrain technologies is to adopt a systems integration approach and develop optimized controls that consider the propulsion system and vehicle as a whole. This approach becomes essential when incorporating Advanced Driver Assistance Systems (ADAS) and communication technologies, which can provide information on future driving conditions. This may enable the powertrain control system to further improve the vehicle performance and energy efficiency, shifting from an instantaneous optimization of energy consumption to a predictive and “look-ahead” optimization. Benefits from this approach can be realized at all levels of electrification, from conventional combustion engines to hybrid propulsion systems and full electric vehicles, and at all levels of vehicle automation.
Technical Paper

Estimation of Fuel Economy on Real-World Routes for Next-Generation Connected and Automated Hybrid Powertrains

2020-04-14
2020-01-0593
The assessment of fuel economy of new vehicles is typically based on regulatory driving cycles, measured in an emissions lab. Although the regulations built around these standardized cycles have strongly contributed to improved fuel efficiency, they are unable to cover the envelope of operating and environmental conditions the vehicle will be subject to when driving in the “real-world”. This discrepancy becomes even more dramatic with the introduction of Connectivity and Automation, which allows for information on future route and traffic conditions to be available to the vehicle and powertrain control system. Furthermore, the huge variability of external conditions, such as vehicle load or driver behavior, can significantly affect the fuel economy on a given route. Such variability poses significant challenges when attempting to compare the performance and fuel economy of different powertrain technologies, vehicle dynamics and powertrain control methods.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Design and Control of Commuter Plug-In FC Hybrid Vehicle

2007-09-16
2007-24-0079
Strong dependency on crude oil in most areas of modern transportation needs lead into a significant consumption of petroleum resources over many decades. In order to maximize the effective use of remaining resources, various types of powertrain topologies, such as hybrid configurations among fuel cell, electric battery as well as conventional IC engine, have been proposed and tested out for number of vehicle classes including a personal commuting vehicle. In this paper the vehicle parameters are based on a typical commercial sub-compact vehicle (FIAT Panda) and energy needs are estimated on the sized powertrain. The main control approach is divided in two categories: off-line global optimization with dynamic programming (DP, not implementable in real time), and on-line Proportional and Feed-Forward with PI controllers. The proposed control approaches are developed both for charge-sustaining and charge-depleting mode and sample results are shown and compared.
Technical Paper

Modeling, Simulation and Design Space Exploration of a MTV 5.0 Ton Cargo Truck in MSC-ADAMS

2005-04-11
2005-01-0938
This paper presents the results of a design space exploration based on the simulations of the MTV (Medium Tactical Vehicle) 5.0 Ton Cargo Truck using MSC-ADAMS (Automatic Dynamic Analysis of Mechanical System). Design space study is conducted using ADAMS/Car and ADAMS/Insight to consider parametric design changes in suspension and the tires of the cargo truck. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) for the modeling of the cargo truck and a flexible optimization architecture to explore the design space. This research is a part of the work done for the U.S. Army TACOM (Tank Automotive and Armaments Command) at the Center for Automotive Research, The Ohio State University.
Technical Paper

Model-Based Fault Diagnosis of Spark-Ignition Direct-Injection Engine Using Nonlinear Estimations

2005-04-11
2005-01-0071
In this paper, the detection and isolation of actuator faults (both measured and commanded) occurring in the engine breathing and the fueling systems of a spark-ignition direct-injection (SIDI) engine are described. The breathing system in an SIDI engine usually consists of a fresh air induction path via an electronically controlled throttle (ECT) and an exhaust gas recirculation (EGR) path via an EGR valve. They are dynamically coupled through the intake manifold to form a gas mixture, which eventually enters the engine cylinders for a subsequent combustion process. Meanwhile, the fueling system is equipped with a high-pressure common-rail injection for a precise control of the fuel quantity directly injected into the engine cylinders. Since the coupled system is highly nonlinear in nature, the fault diagnosis will be performed by generating residuals based on multiple nonlinear observers.
Technical Paper

High Performance Fuel Cell Sedan

2004-03-08
2004-01-1003
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Some recent conceptual designs, such as GM's Hy-wire, have recognized this and offered innovative new architectures. Unfortunately, many other new technology concept cars do not exploit the freedoms of the new technologies, hampering themselves with traditional design cues developed for conventional powertrains. This paper will present the conceptual design of a high-power, high-speed fuel cell luxury sedan. One of the main motivations of this case study was to explore what could happen when a vehicle was designed from the ground up as a fuel cell vehicle, optimized at the overall system level as well as at the individual component level. The paper will discuss innovations in vehicle architecture and novel concepts for the electrical transmission, fuel cell system and electromagnetic suspension.
Technical Paper

In-Depth Analysis of the Influence of High Torque Brakes on the Jackknife Stability of Heavy Trucks

2003-11-10
2003-01-3398
Published NHTSA rulemaking plans propose significant reduction in the maximum stopping distance for loaded Class-VIII commercial vehicles. To attain that goal, higher torque brakes, such as air disc brakes, will appear on prime movers long before the trailer market sees significant penetration. Electronic control of the brakes on prime movers should also be expected due to their ability to significantly shorten stopping distances. The influence upon jackknife stability of having higher performance brakes on the prime mover, while keeping traditional pneumatically controlled s-cam drum brakes on the trailer, is discussed in this paper. A hybrid vehicle dynamics model was applied to investigate the jackknife stability of tractor-semitrailer rigs under several combinations of load, speed, surface coefficient, and ABS functionality.
Technical Paper

Model-Based Component Fault Detection and Isolation in the Air-Intake System of an SI Engine Using the Statistical Local Approach

2003-03-03
2003-01-1057
The stochastic Fault Detection and Isolation (FDI) algorithm, known as the statistical local approach, is applied in a model-based framework to the diagnosis of component faults in the air-intake system of an automotive engine. The FDI scheme is first presented as a general methodology that permits the detection of faults in complex nonlinear systems without the need for building inverse models or numerous observers. Although sensor and actuator faults can be detected by this FDI methodology, component faults are generally more difficult to diagnose. Hence, this paper focuses on the detection and isolation of component faults for which the local approach is especially suitable. The challenge is to provide robust on-board diagnostics regardless of the inherent nonlinearities in a system and the random noise present.
Technical Paper

New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control

2003-03-03
2003-01-1322
This paper introduces a new nonlinear model for simulating the dynamics of pneumatic-over-mechanical commercial vehicle braking systems. The model employs an effective systems approach to accurately reproduce forcing functions experienced at the hubs of heavy commercial vehicles under braking. The model, which includes an on-off type ABS controller, was developed to accurately simulate the steer, drive, and trailer axle drum (or disc) brakes on modern heavy commercial vehicles. This model includes parameters for the pneumatic brake control and operating systems, a 4s/4m (four sensor, four modulator) ABS controller for the tractor, and a 2s/2m ABS controller for the trailer. The dynamics of the pneumatic control (treadle system) are also modeled. Finally, simulation results are compared to experimental data for a variety of conditions.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

Design Optimization of Heavy Vehicles by Dynamic Simulations

2002-11-18
2002-01-3061
Building and testing of physical prototypes for optimization purposes consume significant amount of time, manpower and financial resources. Mathematical formulation and solution of vehicle multibody dynamics equations are also not feasible because of the massive size of the problem. This paper proposes a methodology for vehicle design optimization that does not involve physical prototyping or exhaustive mathematics. The proposed method is fast, cost effective and saves considerable manpower. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) and a flexible architecture to explore large design spaces.
X