Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

GDi Skew-Angled Nozzle Flow and Near-Field Spray Analysis using Optical and X-Ray Imaging and VOF-LES Computational Fluid Dynamics

2013-04-08
2013-01-0255
Improvement of spray atomization and penetration characteristics of the gasoline direct-injection (GDi ) multi-hole injector is a critical component of the GDi combustion developments, especially in the context of engine down-sizing and turbo-charging trend that is adopted in order to achieve the European target CO₂, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to improve the GDi multi-hole spray characteristics. This publication reports VOF-LES analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries. The objective is to extend previous works to include the effect of nozzle-hole skew angle on the nozzle flow and spray primary breakup. VOF-LES simulations of a single nozzle-hole of a purpose-designed GDi multi-hole seat geometry, with three identical nozzle-holes per 120° seat segment, are performed.
Journal Article

Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray

2012-04-16
2012-01-0392
The improvement of spray atomization and penetration characteristics of GDI multi-hole injector sprays is a major component of the engine combustion developments, in order to achieve the fuel economy and emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to achieve optimum multi-objective spray characteristics. The Volume-of-Fluid Large-Eddy-Simulation (VOF-LES) of the injector internal flow and spray break-up processes offers a computational capability to aid development of a fundamental knowledge of the liquid jet breakup process. It is a unique simulation method capable of simultaneous analysis of the injector nozzle internal flow and the near-field jet breakup process. Hence it provides a powerful toll to investigate the influence of nozzle design parameters on the spray geometric and atomization features and, consequently, reduces reliance on hardware trial-and-tests for multi-objective spray optimizations.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Interactions of Multi-hole DI Sprays with Charge Motion and their Implications to Flexible Valve-trained Engine Performance

2011-08-30
2011-01-1883
Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity to simultaneous reduction of fuel consumption and emissions. Because of their robustness and cost performance, multi-hole injectors are being adopted as gasoline DI fuel injectors. Ethanol and ethanol-gasoline blends synergistically improve the performance of a turbo-charged DI gasoline engine, especially in down-sized, down-sped and variable-valvetrain engine architecture. This paper presents Mie-scattering spray imaging results taken with an Optical Accessible Engine (OAE). OAE offers dynamic and realistic in-cylinder charge motion with direct imaging capability, and the interaction with the ethanol spray with the intake air is studied. Two types of cams which are designed for Early Intake Valve Close (EIVC) and Later Intake Valve Close (LIVC) are tested, and the effect of variable valve profile and deactivation of one of the intake valves are discussed.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Entrainment, Evaporation and Mixing Characteristics of Diesel Sprays around End-of-Injection

2009-04-20
2009-01-0849
In this study, air entrainment, fuel evaporation and mixing process of diesel sprays injected by micro-orifices for direct-injection diesel engines were investigated at the end of injection transient and after the end of injection. The mixture formation process was analyzed using a laser absorption scattering (LAS) technique, providing the information of quantified liquid and vapor mass concentration, entrained air concentration and equivalence ratio. The data was obtained at the timings of quasi-steady state, sudden velocity decrease, the end of injection and after the end of injection. Two micro-orifices, which have different orifice diameters, were selected as test nozzles to investigate the end-of-injection characteristics at different nozzle geometries. In case of smaller orifice diameter, the liquid phase regression was observed around the end of injection, while it was not observed at larger orifice diameter due to denser liquid concentration near the nozzle tip.
Journal Article

Ignition and Combustion Characteristics of Wall-Impinging Sprays Injected by Group-Hole Nozzles for Direct-Injection Diesel Engines

2008-10-06
2008-01-2469
The concept of two closely spaced micro-orifices (group hole nozzle) has been studied as a promising technology for the reduction of soot emission from direct injection (DI) diesel engines by improving the fuel atomization and evaporation. One of the main issues on group hole nozzle is the arrangement of orifices with various distances and angles. In this study, the ignition and combustion characteristics of wall-impinging diesel sprays from group-hole nozzles were investigated with various angles between two micro-orifices (included angles). A laser absorption scattering (LAS) technique for non-axisymmetric sprays, developed based on a LAS technique for axisymmetric spray, was applied to investigate the liquid/vapor mass distribution of wall-impinging sprays. The direct flame images and OH radical images inside a high pressure constant volume vessel were captured to analyze the effect of included angle on spray ignition and combustion characteristics.
Journal Article

Characterization of Diesel Common Rail Spray Behavior for Single- and Double-hole Nozzles

2008-10-06
2008-01-2424
Double-hole nozzle and multiple injections have the potential for better fuel atomization and mixing in DI engine. In order to evaluate the behavior of the spray for the double-hole nozzles against traditional single-hole ones, high-speed spray visualization was carried out using a streak film camera and a copper vapor laser, and in combination with a long-distance camera when taking microscopic movies. The spray penetration and the cone angle were measured based on the images and compared for variable injection pressures, and for single and split injections, under ambient and elevated chamber pressure conditions. The results showed that the spray of the double-hole nozzle has comparable penetration but smaller cone angle when viewed from the nozzle end, compared to the single-hole nozzle with the same total hole discharge cross-sectional area. For microscopic view, it was observed that the interaction between the dual sprays is very dynamic.
Technical Paper

Generation of Robust and Well-Atomized Swirl Spray

2007-07-23
2007-01-1852
The spray characteristics of a swirl injector for direct-injection spark-ignition (DISI) engines were investigated for the generation of robust and well-atomized swirl spray. A highly-inclined tapered nozzle is applied as a test nozzle and the spray characteristics are compared with conventional nozzle and L-step nozzle. When the taper angle is 70°, an opened hollow cone spray is formed. This spray does not collapse with increasing fuel temperature and back pressure conditions. However, the taper angle should be optimized to avoid forming a locally rich area and to increase the spray volume. The droplet size of 70° tapered nozzle spray shows a value similar to that of the original swirl spray in the horizontal mainstream while it shows an increased value in the vertical mainstream. The deteriorated atomization characteristics of the tapered nozzle spray are improved by applying high fuel temperature injection without causing spray collapse.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Comparing Cavitation in Diesel Injectors Based on Different Modeling Approaches

2004-03-08
2004-01-0027
Results of Computational Fluid Dynamic (CFD) analyses of different diesel fuel injector nozzle configurations using a commercial CFD code are presented here. The emphasis of this study is on comparing cavitation models available in the commercial code with respect to their mathematical approach. One of the models is a simple single-phase model based on the Barotropic equation of state, while the other model is a two-phase model based on the bubble dynamic considerations. Results are compared for various 3-D diesel injector nozzles using the two cavitation-modeling approaches. Simulation results are observed to substantiate some of the experimentally established facts like; nozzle efficiency improvements by using techniques like rounded orifice inlets and conical orifices. Also, simulation results agree well with the experimental results. Spray characteristics are predicted based on a primary breakup model.
Technical Paper

Predicting Diesel Injector Nozzle Flow Characteristics

2004-01-16
2004-28-0014
In diesel injector nozzles, the shape of the orifice entrance and the sac-volume play a significant role in determining the orifice internal flow characteristics and the subsequent spray formation process. The sac-volume of the injector nozzle determines injection characteristics like injection rate shape and discharge coefficients. The sac-volume is also important from emissions point of view, in that it controls the amount of Un-Burnt Hydrocarbons (UBHC). This paper demonstrates the use of commercial dynamic and computational fluid dynamics (CFD) programs in predicting the flow characteristics of various nozzle orifice and sac-volume configurations. Three single orifice nozzle tips with varying sac configurations and orifice entrance shapes are studied. Transient simulations are carried out in order to compare the injection rates, discharge coefficients and internal flow characteristics for the nozzle tips. The simulation results are compared with experimental results.
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
X