Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Technical Paper

A Comparison of Four Modelling Techniques for Thermoelectric Generator

2017-03-28
2017-01-0144
The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Technical Paper

Optimization of the Number of Thermoelectric Modules in a Thermoelectric Generator for a Specific Engine Drive Cycle

2016-04-05
2016-01-0232
Two identical commercial Thermo-Electric Modules (TEMs) were assembled on a plate type heat exchanger to form a Thermoelectric Generator (TEG) unit in this study. This unit was tested on the Exhaust Gas Recirculation (EGR) flow path of a test engine. The data collected from the test was used to develop and validate a steady state, zero dimensional numerical model of the TEG. Using this model and the EGR path flow conditions from a 30% torque Non-Road Transient Cycle (NRTC) engine test, an optimization of the number of TEM units in this TEG device was conducted. The reduction in fuel consumption during the transient test cycle was estimated based on the engine instantaneous Brake Specific Fuel Consumption (BSFC). The perfect conversion of TEG recovered electrical energy to engine shaft mechanical energy was assumed. Simulations were performed for a single TEG unit (i.e. 2 TEMs) to up to 50 TEG units (i.e. 100 TEMs).
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

Feasibility Study of Operating 2-Stroke Miller Cycles on a 4-Stroke Platform through Variable Valve Train

2015-09-01
2015-01-1974
A 2-stroke combustion cycle has higher power output densities compared to a 4-stroke cycle counterpart. The modern down-sized 4-stroke engine design can greatly benefit from this attribute of the 2-stroke cycle. By using appropriate variable valvetrain, boosting, and direct fuel injection systems, both cycles can be feasibly implemented on the same engine platform. In this research study, two valve strategies for achieving a two-stroke cycle in a four-stroke engine have been studied. The first strategy is based on balanced compression and expansion strokes, while the gas exchange is done through two different strokes. The second approach is a novel 2-stroke combustion strategy - here referred to as 2-stroke Miller - which maintains the expansion as achieved in a 4-stroke cycle but suppresses the gas exchange into the compression stroke.
Journal Article

Model-Based Fault Diagnosis of Selective Catalytic Reduction Systems for Diesel Engines

2014-04-01
2014-01-0280
In this paper, a model-based diagnostic system was developed to detect and isolate the dosing fault and the outlet NOx sensor fault for the SCR system. The dosing fault is treated as an actuator additive fault, while the outlet NOx sensor drift and/or offset fault is treated as a sensor additive fault. First, a 0-D SCR model was developed to facilitate the model-based approach. A parity equation residual generator was designed based on the linearized SCR model and the fault transfer function matrix. The diagnostic algorithm is then implemented in the Matlab/Simulink environment for validation. A high fidelity nonlinear 1-D SCR model is used to generate system outputs and to simulate the plant. The simulation results show that the model-based fault diagnosis system succeeds in detecting and isolating the outlet NOx sensor and dosing faults with good sensitivity and robustness
Technical Paper

Addressing the Heat Exchange Question for Thermo-Electric Generators

2013-04-08
2013-01-0550
The use of thermo-electric (TE) generation systems in internal combustion engines (ICEs) to reduce the carbon dioxide emission by harnessing the exhaust thermal energy is showing increasing promise. In addition, integration with after treatment devices is a development route for this technology that offers a great potential. Recent work on TE systems have shown that the overall efficiency of present TE generation systems are constrained by, the limitations of the conversion efficiency and operating temperatures of TE materials; fabrication quality, durability and thermal performance of the thermo-electric modules (TEMs); geometrical configuration and heat exchange efficiency of thermo-electric generator (TEG) and; conversion techniques of the TEG's electrical output to a form suitable for vehicle systems.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

2012-04-16
2012-01-0893
For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Technical Paper

Thermodynamic Study on the Solubility of NaBH4 and NaBO2 in NaOH Solutions

2011-08-30
2011-01-1741
Extensive research has been performed for on-board hydrogen generation, such as pyrolysis of metal hydrides (e.g., LiH, MgH₂), hydrogen storages in adsorption materials (e.g., carbon nanotubes and graphites), compressed hydrogen tanks and the hydrolysis of chemical hydrides. Among these methods, the hydrolysis of NaBH₄ has attracted great attention due to the high stability of its alkaline solution and the relatively high energy density, with further advantages such as moderate temperature range (from -5°C to 100°C) requirement, non-flammable, no side reactions or other volatile products, high purity H₂ output. The H₂ energy density contained by the system is fully depend on the solubility of the complicated solution contains reactant, product and the solution stabilizer. In this work, an approach based on thermodynamic equilibrium was proposed to model the relationship between the solubility of an electrolyte and temperature, and the effect of another component on its solubility.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Energy Recovery Systems for Engines

2008-04-14
2008-01-0309
Energy recovery from IC engines has proved to be of considerable interest across the range of vehicle applications. The motivation is substantial fuel economy gain that can be achieved with a minimal affect on the “host” technology of the vehicle. This paper reviews the initial results of a research project whose objective has been to identify system concepts and control methods for thermal recovery techniques. A vapour power cycle is the means of energy transfer. The architecture of the system is considered along with support of the fuel economy claims with the results of some hybrid vehicle modelling. An overview of the latest experimental equipment and design of the heat exchanger is presented. The choice of control architecture and strategy, whose goal is overall efficiency of the engine system, is presented and discussed. Some initial control results are presented.
Technical Paper

Heat Recovery and Bottoming Cycles for SI and CI Engines - A Perspective

2006-04-03
2006-01-0662
The pursuit of fuel economy is forcing technology change across the range of control and engine management technologies. Improved thermal management has been addressed in order to promote fast warm-up, improved exhaust gas after-treatment performance, and lower variance in combustion through a consistent and high cylinder head temperature. Temperature management of exhaust gas is of increasing interest because of the need to maintain efficiency in after-treatment devices. More effective temperature management places requirements on heat exchange systems, and offers the potential for bottoming and heat recovery cycles that use energy transferred from the exhaust stream. Turbo-compounding is already established in heavy duty engines, where a reduction in exhaust gas temperature is the consequence of an additional stage of expansion through an exhaust turbine. A new project in electric turbo-compounding offers flexibility in the control of energy extracted from the exhaust stream[1].
Technical Paper

Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature

2005-04-11
2005-01-0157
The Homogeneous Charge Compression Ignition (HCCI) engine combustion uses heat energy from trapped exhaust gases enhanced by the piston compression heating to auto ignite a premixed air/gasoline mixture. As the HCCI combustion is controlled by the charge temperature, composition and pressure, it therefore, prevents the use of a direct control mechanism such as in the spark and diesel combustion. Using a large amount of trapped residual gas (TRG), is seen as one of the ways to achieve and control HCCI in a certain operating range. By varying the amount of TRG in the fresh air/fuel mixture (inside the cylinder), the charge mixture temperature, composition and pressure can be controlled and hence, the auto ignition timing and heat release rate. The controlled auto ignition (HCCI) engine concept has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions.
Technical Paper

On the Mechanism of Controlled Auto Ignition

2002-03-04
2002-01-0421
Controlled auto ignition (CAI) is a form of combustion which uses an auto-ignited homogeneous air/fuel mixture but is controlled (or moderated) by regulating the quantity of internal exhaust gas residuals. In this paper, using a fully variable valve train and a newly developed exhaust valve control strategy, we substituted EGR with hot nitrogen or hot air. We found that the internal exhaust gas residuals have both thermal and chemical effects on CAI combustion. To investigate the thermal effect, nitrogen was used as it is a chemically inert gas. Although its temperature was raised to that of the internal exhaust gas residuals during testing, CAI combustion could not be promoted without assistance from a spark in a form of hybrid CAI, thus indicating that exhaust gas residuals have a chemical effect as well.
Technical Paper

A Review of Experimental and Simulation Studies on Controlled Auto-Ignition Combustion

2001-05-07
2001-01-1890
Engines with controlled auto-ignition (CAI) combustion offer a number of benefits over conventional spark ignited (SI) and compression ignited (CI) engines, such as much lower NOx emission due to its relatively low combustion temperature, negligible cycle-to-cycle variation due to its self-ignition nature, higher combustion efficiency at part load than its SI counterpart, and low soot emissions since a homogeneous lean air/fuel mixture is being employed. Unlike conventional SI and CI engines, where combustion is directly controlled by the engine management system, the combustion in CAI engines is controlled by chemical kinetics only. Over the past two decades, a number of technologies have been developed to initiate such combustion on both 2 and 4-stroke engines with various fuels, but none of them could maintain the combustion over the wide engine operation range. Remaining problems include control of ignition timing and the heat release rate over the entire engine operation range.
Technical Paper

An Investigation into the Use of Piezo-Fluidic Combined Units as Fuel Injectors for Natural Gas Engines

1996-10-01
961987
A novel piezo-fluidic gaseous fuel injector system designed for natural gas engines is described in this paper The system consists mainly of no-moving-part fluidic devices and piezo electro-fluidic interfaces The steady state and dynamic characteristics of the system were tested on a laboratory experimental rig The results show that the system can handle the large gas volume flow rate required by natural gas engines and is capable of operating via pulse width modulation. A few typical commercial solenoid type gas injectors were also tested and the results were compared with those from the piezo-fluidic injector system. It was found that the piezo-fluidic gaseous fuel injector system has faster switching responses and smaller injection cycle-to-cycle variations
X