Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

2019-12-19
2019-01-2282
In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Investigation of Particulate Matter Formation in a Diesel Engine Using In-Cylinder Total Sampling and Thermal Desorption-GCMS/Carbon Analysis

2019-12-19
2019-01-2276
In-cylinder total sampling technique utilizing a single-cylinder diesel engine equipped with hydraulic valve actuation system has been developed. In this study, particulate matter (PM) included in the in-cylinder sample gas was collected on a quartz filter, and the polycyclic-aromatic hydrocarbons (PAHs) component and soot were subsequently quantified by thermal desorption-gas chromatograph mass spectrometry (TD-GCMS) and a carbon analyzer, respectively. Cylinder-averaged histories of PAHs and soot were obtained by changing the sampling timing. It was found that decreasing intake oxygen concentration suppresses in-cylinder soot oxidation, and the fuel with higher aromatic and naphthenic contents accelerates soot production.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

A Study of Combustion in an HCCI Engine Using Non-Equilibrium Plasma Discharge Assist

2017-11-05
2017-32-0084
This study focused on a non-equilibrium plasma discharge as a means of assisting HCCI combustion.Experiments were conducted with a four-stroke single-cylinder engine fitted with a spark electrode in the top of the combustion chamber for continuously generating non-equilibrium plasma from the intake stroke to the exhaust stroke. The results showed that applying non-equilibrium plasma to the HCCI test engine advanced the main combustion period that otherwise tended to be delayed as the engine speed was increased. In addition, it was found that the combined use of exhaust gas recirculation and non-equilibrium plasma prevented a transition to partial combustion while suppressing cylinder pressure oscillations at high loads.
Technical Paper

Analysis of Supercharged HCCI Combustion Using Low-Carbon Alternative Fuels

2017-11-05
2017-32-0085
This study investigated the effects of recirculated exhaust gas (EGR) and its principal components of N2, CO2 and H2O on moderating Homogeneous Charge Compression Ignition (HCCI) combustion. Experiments were conducted using two types of gaseous fuel blends of DME/propane and DME/methane as the test fuels. The addition rates of EGR, N2, CO2 and H2O were varied and the effects of each condition on HCCI combustion of propane and methane were investigated. The results revealed that the addition of CO2 and H2O had the effect of substantially delaying and moderating rapid combustion. The addition of N2 showed only a slight delaying and moderating effect. The addition of EGR had the effect of optimally delaying the combustion timing, while either maintaining or increasing the indicated mean effective pressure and indicated thermal efficiency ηi.
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

2017-11-05
2017-32-0090
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Journal Article

Effect of Streamer Discharge Assist on Combustion in a Supercharged HCCI Engine

2016-11-08
2016-32-0013
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest in recent years as a clean, high-efficiency combustion system. However, it is difficult to control the ignition timing in HCCI engines because they lack a physical means of inducing ignition. Another issue of HCCI engines is their narrow operating range because of misfiring that occurs at low loads and abnormal combustion at high loads. As a possible solution to these issues, this study focused on the application of a streamer discharge in the form of non-equilibrium plasma as a technique for assisting HCCI combustion. Experiments were conducted with a four-stroke single-cylinder engine fitted with an ignition electrode in the combustion chamber. A streamer discharge was continuously generated in the cylinder during a 720-degree interval from the intake stroke to the exhaust stroke.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of EGR on Knocking in an HCCI Engine Using an Optically Accessible Engine

2016-11-08
2016-32-0012
This study was conducted to investigate the influence of cooled recirculated exhaust gas (EGR) on abnormal combustion in a Homogenous Charge Compression Ignition (HCCI) engine. The condition of abnormal HCCI combustion accompanied by cylinder pressure oscillations was photographed with a high-speed camera using a 2-stroke optically accessible engine that enabled visualization of the entire bore area. Exhaust gas was cooled with a water-cooled intercooler for introducing cooled EGR. Experiments were conducted in which the quantity of cooled EGR introduced was varied and a comparison was made of the autoignition behavior obtained under each condition in order to investigate the influence of cooled EGR on abnormal HCCI combustion. The results revealed that cylinder pressure oscillations were reduced when cooled EGR was introduced. That reduction was found to be mainly ascribable to the effect of cooled EGR on changing the ignition timing.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

Heat Release Rate and Cylinder Gas Pressure Oscillation in Low and High Speed Knock

2015-09-01
2015-01-1880
One of the authors has proposed to use the decay rate of EHRR, the effective heat release rate, d2Q/dθ2 as an index for the rapid local combustion [1]. In this study, EHRR profiles and the cylinder gas pressure oscillations of the low and high speed knock are analyzed by using this index. A delayed rapid local combustion, such as an autoignition with small burned mass fraction can be detected. In the cases of the low speed knock, it has been agreed that a rapid local combustion is an autoignition. Although whether the cylinder gas oscillation is provoked by an auto ignition in a certain cycle or not is an irregular phenomenon, the auto ignition takes place in almost all of the cycles in the knocking condition. Mixture mass fraction burned by an auto ignition is large. A small auto ignition may induce a secondary auto ignition, in many cases, mass burned by the secondary auto ignition is extremely large.
Journal Article

Ignition Characteristics of Ethane and Its Roles in Natural Gas for HCCI Engine Operation

2015-04-14
2015-01-0811
The ignition characteristics of each component of natural gas and the chemical kinetic factors determining those characteristics were investigated using detailed chemical kinetic calculations. Ethane (C2H6) showed a relatively short ignition delay time with high initial temperature; the heat release profile was slow in the early stage of the ignition process and rapid during the late stage. Furthermore, the ignition delay time of C2H6 showed very low dependence on O2 concentration. In the ignition process of C2H6, HO2 is generated effectively by several reaction paths, and H2O2 is generated from HO2 and accumulated with a higher concentration, which promotes the OH formation rate of H2O2 (+ M) = OH + OH (+ M). The ignition characteristics for C2H6 can be explained by H2O2 decomposition governing OH formation at any initial temperature.
Technical Paper

Reaction Zone Propagation by Spark Discharge in Homogeneous Lean Charge after Low-Temperature Oxidation

2015-04-14
2015-01-0820
The interaction between spark discharge and low-temperature oxidation (LTO) was investigated using an optical compression and expansion machine fueled with n-C7H16 or i-C8H18 for an equivalence ratio of 0.33. Charge pressure was adjusted so that the compression stoke could induce LTO for n-C7H16, but could not lead to high-temperature reactions. A spark was discharged in the field before, during, or after the LTO for n-C7H16 or in the field without LTO for i-C8H18. Reaction zones were induced in the field after the LTO, whereas no reaction zones were induced in the fields before the LTO and without LTO. Local ignitions were induced in the areas surrounding the propagating reaction zones. The reaction zone propagation with the low equivalence ratio must be a different phenomenon from conventional flame propagation. The reaction zones can compress or heat the surrounding areas containing H2O2 and CH2O, and accelerate an H2O2 regeneration loop in the pre-reaction zones.
X