Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

Impact of Ethanol-Gasoline Port Injected on Performance and Exhaust Emissions of a Turbocharged SI Engine

2018-04-03
2018-01-0914
This paper presents results of an experimental investigation on a flexible port dual fuel injection using different ethanol to gasoline mass fractions. A four stroke, two cylinder turbocharged SI engine was used for the experiments. The engine speed was set at 3000 rpm, tests were carried out at medium-high load and two air-fuel-ratio. The initial reference conditions were set running the engine, fueled with full gasoline at the KLSA boundary, in accordance with the standard ECU engine map. This engine point was representative of a rich mixture (λ=0.9) in order to control the knock and the temperature at turbine inlet. The investigated fuels included different ethanol-gasoline mass fractions (E10, E20, E30 and E85), supplied by dual injection within the intake manifold. A spark timing sweep, both at stoichiometric and lean (λ=1.1) conditions, up to the most advanced one without knock was carried out.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

Combustion Process Investigation in a DISI Engine Fuelled with n-butanol Through Digital Imaging and Chemiluminescence

2015-09-01
2015-01-1887
Direct-injection spark-ignition (DISI) engines have been adopted increasingly by the automotive industry in recent years due to their performance, reduced impact on the environment, and customer demand for advanced technology. However, detailed combustion processes in such engines are still not thoroughly analysed and understood. This work reports on the effects of different control parameters on the combustion process, such as fuel type, ignition timing and exhaust gas recirculation. Pure n-butanol and gasoline were used. All experiments were performed at 2000 rpm and 100 bar injection pressure in a transparent single-cylinder DISI engine equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). Crank angle resolved 2D chemiluminescence in the UV range for OH radical and CO2 detection was performed with an ICCD camera and a high-speed CMOS camera was used for cycle resolved imaging.
Technical Paper

Effect of Control Parameters in an Optical DISI Engine with Gasoline-Butanol Fueling

2015-09-01
2015-01-1944
Effects of n-butanol on the combustion process in a direct injection spark ignition engine were investigated through flame visualization and spectroscopy. An optically accessible engine was equipped for the trials with a commercial cylinder head and wall guided injection system. Injection pressure (100 bar) and engine speed (2000 rpm) were fixed while injection timing and duration were changed to realise stoichiometric and lean fuelling in homogenous charge conditions. Specifically, UV-visible digital imaging was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. UV-visible natural emission spectroscopy was applied to investigate the formation and the evolution of the main chemical compounds characterizing the spark ignition and combustion processes. Detailed image processing allowed to correlate the morphology and the local flame front curvature with thermodynamic data.
Journal Article

Split Injection in a DISI Engine Fuelled with Butanol and Gasoline Analyzed through Integrated Methodologies

2015-04-14
2015-01-0748
In this study, experiments were carried out in an optical single-cylinder Direct Injection Spark Ignition engine fuelled with n-butanol and gasoline, alternatively. The engine is equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). The head has four valves and a centrally located spark device with surface charge ignition. A conventional elongated hollow Bowditch piston is used and an optical crown, accommodating fused-silica window, is screwed onto it. The injector is side mounted and features 6 holes oriented to guide the jets towards the piston crown. During the experimental activity, the injection pressure was maintained at 100 bar for all conditions; the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions.
Technical Paper

Characterization of Alcohol Sprays from Multi-Hole Injector for DISI Engines through PIV Technique

2015-04-14
2015-01-0927
The use of alcohols as alternative to gasoline for fuelling spark-ignition (SI) engines is widespread. Growing interest is paid for n-butanol because of its characteristics that are similar to gasoline. If compared with other alcohols, n-butanol has higher energy content and miscibility with gasoline, lower hygroscope and corrosive properties making it an attractive solution for gasoline replacement. Even if several studies have been conduced to characterize the n-butanol combustion within Spark Ignition engines, few data are available on atomization and spray behavior. This paper reports the results of an experimental investigation to characterize the velocity vector field of two fuel-sprays injected by a 6-hole nozzle for Direct Injection Spark Ignition (DISI) engine. 2D Mie-scattering and Particle Image Velocimetry (PIV) measurements were carried out in an optically accessible vessel at ambient temperature and pressure.
Technical Paper

Optical Properties Investigation of Alternative Fuels Containing Carbon-Based Nanostructures

2014-10-13
2014-01-2765
Liquids with stable suspensions of nanoscale materials are defined as nanofluids. As reported in recent scientific literature, a very small amount of suspended nanostructures has the potential to enhance the thermo physical, transport and radiative properties of the base fluid. One of the main applications of this technology is in the field of combustion and fuels. In fact, adding nanomaterials (such as metals, oxides, carbides, nitrides, or carbon-based nanostructures) to liquid fuels is able to enhance ignition and combustion. The focus of this research is to gain a fundamental understanding of the characteristics of a nanofluid fuel prepared using carbon nanoparticles (CNPs) and multi-walled carbon nanotubes (MWCNTs) dispersed in butanol. This study starts with the investigation of the optical properties of the mixtures. The transmission spectra of the nanofluids are measured in a wide wavelength range from UV (250 nm) to near IR (800 nm).
Technical Paper

Effect of Different Fuels Properties on Emissions and Performance of a Light Duty Four-Cylinder Diesel Engine Under Premixed Combustion

2014-10-13
2014-01-2674
The use of biodiesel or oxygenated fuels from renewable sources in diesel engines is of particular interest because of the low environmental impact that can be achieved. The present paper reports results of an experimental investigation performed on a light duty diesel engine fuelled with biodiesel, gasoline and butanol mixed, at different volume fractions, with mineral diesel. The investigation was performed on a turbocharged DI four cylinder diesel engine for automotive applications equipped with a common rail injection system. Engine tests were carried out at 2500 rpm, 0.8 MPa of brake mean effective pressure selecting a single injection strategy and performing a parametric analysis on the effect of combustion phasing and oxygen concentration at intake on engine performance and exhaust emissions. The experiments demonstrated that the fuel properties have a strong impact on soot emissions.
Technical Paper

Investigation of the Effect of Boost Pressure and Exhaust Gas Recirculation Rate on Nitrogen Oxide and Particulate Matter Emissions in Diesel Engines

2013-09-08
2013-24-0017
In recent years, due to the growing problem of environmental pollution and climate change internal combustion engine stroke volume size has been reduced. The use of down-sized engines provides benefit for reducing emissions and fuel consumption especially at the inner city driving conditions. However, when the engine demands additional power, utilizing a turbocharging system is required. This study is a joint work of Istituto Motori CNR with Automotive Laboratory of Mechanical Engineering Faculty of Istanbul Technical University (ITU) and the objective of this study was devoted to increase the understanding of various engine operating conditions on emissions, especially at low load. The trade-off between Nitrogen Oxide (NOx) and Particulate Matter (PM) emissions in a Diesel engine has been examined depending on turbocharging rates and the rate of Exhaust Gas Recirculation (EGR) applied.
Technical Paper

Experimental Investigation on the Combustion and Emissions of a Light Duty Diesel Engine Fuelled with Butanol-Diesel Blend

2013-04-08
2013-01-0915
In the present paper, results of an experimental investigation carried out in a modern Diesel engine running at different operating conditions and fuelled with commercial diesel and n-butanol-diesel blend are reported. The investigation was focused on the management of injection strategy and combustion timing (CA50) exploring the effect of intake oxygen concentration and boost pressure on engine out emissions. The aim of the paper was to compare, with respect to commercial diesel, the effects of a fuel blend with a lower cetane number and higher volatility on performance and engine out emissions. Engine tests, with baseline diesel and a blend made by the baseline low sulphur diesel with 20% in volume of n-butanol (B20), were performed comparing engine out gaseous, smoke emissions and combustion efficiency. The investigation was performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
Technical Paper

Optical Investigation of Post-injection Strategy Impact on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Biodiesel Blends

2013-04-08
2013-01-1127
Multi-wavelength ultraviolet-visible extinction spectroscopy was applied to follow the evolution of fuel vapor injected by post-injection along the exhaust line of a common-rail turbocharged direct-injection diesel engine at moderate speed and load. The exhaust line was specifically designed and customized to allow the insertion of the optical access upstream of the Diesel Oxidation Catalyst. During the experimental campaign, the engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel, monitoring emissions upstream of the catalyst and exhaust gas temperature across the catalyst. Tests were performed at different engine operating conditions with particular attention to moderate speed and load.
Technical Paper

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-04-16
2012-01-1127
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Technical Paper

Effects of Premixed Low Temperature Combustion of Fuel Blends with High Resistance to Auto-ignition on Performances and Emissions in a High Speed Diesel Engine

2011-09-11
2011-24-0049
This paper reports results of an experimental investigation to demonstrate the potential to employ blends of fuels having low cetane numbers that can provide high resistance to auto-ignition to reduce simultaneously NOx and smoke. Because of the higher resistance to auto-ignition, blends of diesel and gasoline at different volume fraction may provide more time for the mixture preparation by increasing the ignition delay. The result produces the potential to operate under partially premixed low temperature combustion with lower levels of EGR without excessive penalties on fuel efficiency. In addition to the diesel fuel, the tested blends were mixed by the baseline diesel with 20% and 40% of commercial EURO IV 98 octane gasoline by volume, denoted G20 and G40. The experimental activity has been performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
Journal Article

Optical Diagnostics of the Pollutant Formation in a CI Engine Operating with Diesel Fuel Blends

2011-06-09
2011-37-0003
To meet the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. Oxygenated fuels have showed a tendency to decrease internal combustion engine emissions. In the same time, advanced fuel injection modes can promote a further reduction of the pollutants at the exhaust without penalty for the combustion efficiency. One of the more interesting solutions is provided by the premixed low temperature combustion (LTC) mechanism jointly to lower-cetane, higher-volatility fuels. In this paper, to understand the role played by these factors on soot formation, cycle resolved visualization, UV-visible optical imaging and visible chemiluminescence were applied in an optically accessed high swirl multi-jets compression ignition engine. Combustion tests were carried out using three fuels: commercial diesel, a blend of 80% diesel with 20% gasoline (G20) and a blend of 80% diesel with 20% n-butanol (BU20).
Technical Paper

Effects of Low Temperature Premixed Combustion (LTPC) on Emissions of a Modern Diesel Engine for Passenger Cars

2010-04-12
2010-01-0333
In this paper, a Low Temperature Premixed Combustion (LTPC) was investigated employing a four cylinder D.I. common rail Diesel engine, used for passenger cars on the European market. Experiments were carried out setting the engine speed at 2500 rpm with a fuel amount of 26 mg/str to realize an operating condition close to the point of NEDC at 0.8 MPa of BMEP. The experimental approach was the management of the start of injection, injection pressure and EGR rates as a method to control NOx and soot production. The investigation was first carried out testing engine performances and emissions as set from the commercial engine map. Afterward, engine tests were carried out exploring performances, gaseous and smoke emissions at late start of combustion [10 to 17.5 cad ATDC], injection pressures from 80 to 120 MPa and EGR rates up to 50%.
X