Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Effects of Injection Timing and Duration on Fuel-Spray Collapse and Wall-Wetting in a Stratified Charge SI Engine

2021-04-06
2021-01-0544
Fuel-lean combustion using late injection during the compression stroke can result in increased soot emissions due to excessive wall-wetting and locally unfavorable air-fuel mixtures due to spray collapse. Multi-hole injectors, most commonly used, experiencing spray collapse, can worsen both problems. Hence, it is of interest to study the contribution of spray collapse to wall-wetting to understand how it can be avoided. This optical-engine study reveals spray characteristics and the associated wall-wetting for collapsing and non-collapsing sprays, when systematically changing the intake pressure, injection duration and timing. High-speed imaging of Mie-scattered light was used to observe changes in the spray structure, and a refractive index matching (RIM) technique was utilized to detect and quantify the area of fuel-film patterns on bottom of the piston bowl. E30 (gasoline blended with 30% ethanol by volume) was used throughout the experiments.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines

2017-10-08
2017-01-2234
Fundamental engine research is primarily conducted under steady-state conditions, in order to better describe boundary conditions which influence the studied phenomena. However, light-duty automobiles are operated, and tested, under heavily transient conditions. This mismatch between studied conditions and in-use conditions is deemed acceptable due to the fundamental knowledge gained from steady-state experiments. Nonetheless, it is useful to characterize the conditions encountered during transient operation and determine if the governing phenomena are unduly influenced by the differences between steady-state and transient operation, and further, whether transient behavior can be reasonably extrapolated from steady-state behavior. The transient operation mode used in this study consists of 20 fired cycles followed by 80 motored cycles, operating on a continuous basis.
Journal Article

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

2017-03-28
2017-01-0662
Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details).
Technical Paper

Simulating a Complete Performance Map of an Ethanol-Fueled Boosted HCCI Engine

2015-04-14
2015-01-0821
This paper follows a cycle-simulation method for creating an engine performance map for an ethanol fueled boosted HCCI engine using a 1-dimensional engine model. Based on experimentally determined limits, the study defined operating conditions for the engine and performed a limited parameter sweep to determine the best efficiency case for each condition. The map is created using a 6-Zone HCCI combustion model coupled with a detailed chemical kinetic reaction mechanism for ethanol, and validated against engine data collected from a 1.9L 4-Cylinder VW TDI engine modified to operate in HCCI mode. The engine was mapped between engine speeds of 900 and 3000 rpm, 1 and 3 bar intake pressure, and 0.2 and 0.4 equivalence ratio, resulting in loads between idle and 14.0 bar BMEP. Analysis of a number of trends for this specific engine map are presented, such as efficiency trends, effects of combustion phasing, intake temperature, engine load, engine speed, and operating strategy.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

2014-04-01
2014-01-1302
Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
Journal Article

Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine

2013-04-08
2013-01-1653
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
Journal Article

Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion

2013-04-08
2013-01-1678
The focus of the present study was to characterize the fuel reactivity of high octane number fuels (i.e., low fuel reactivity), namely gasoline, ethanol, and methanol when mixed with cetane improvers under lean, premixed combustion conditions. Two commercially available cetane improvers, 2-ethylhexyl nitrate and di-tert-butyl peroxide, were used in the study. First, blends of the primary reference fuels iso-octane and n-heptane were port injected under fixed operating conditions. The resulting combustion phasings were used to generate effective PRF number maps. Then, blends of the aforementioned base fuels and cetane improvers were tested under the same lean premixed conditions as the PRF blends. Based on the combustion phasing results of the base fuel and cetane improver mixture, the effective PRF number, or octane number, could be determined.
Technical Paper

Investigation of Pressure Oscillation Modes and Audible Noise in RCCI, HCCI, and CDC

2013-04-08
2013-01-1652
This study uses Fourier analysis to investigate the relationship between the heat release event and the frequency composition of pressure oscillations in a variety of combustion modes. While kinetically-controlled combustion strategies such as HCCI and RCCI offer advantages over CDC in terms of efficiency and NOX emissions, their operational range is limited by audible knock and the possibility of engine damage stemming from high pressure rise rates and oscillations. Several criteria such as peak pressure rise rate, ringing intensity, and various knock indices have been developed to quantify these effects, but they fail to capture all of the dynamics required to form direct comparisons between different engines or combustion strategies. Experiments were performed with RCCI, HCCI, and CDC on a 2.44 L heavy-duty engine at 1300 RPM, generating a significant diversity of heat release profiles.
Technical Paper

Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver

2012-04-16
2012-01-1110
Premixed compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions and diesel-like efficiency. However, these strategies are generally confined to low loads due to difficulties controlling the combustion phasing and heat release rate. Recent experiments have demonstrated that dual-fuel reactivity-controlled compression ignition (RCCI) combustion can improve PCI combustion control and expand the PCI load range. Previous studies have explored RCCI operation using port-fuel injection (PFI) of gasoline and direct-injection (DI) of diesel fuel. In this study, experiments are performed using a light-duty, single-cylinder research engine to investigate RCCI combustion using a single fuel with the addition of a cetane improver 2-ethylhexyl nitrate (EHN). The fuel delivery strategy consists of port-fuel injection of E10 (i.e., 10% ethanol in gasoline) and direct-injection of E10 mixed with 3% EHN.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

2011-04-12
2011-01-0363
Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
Technical Paper

Modeling the Influence of Molecular Interactions on the Vaporization of Multi-component Fuel Sprays

2011-04-12
2011-01-0387
A vaporization model for realistic multi-component fuel sprays is described. The equilibrium at the interface between liquid droplets and the surrounding gas is obtained based on the UNIFAC method, which considers non-ideal molecular interactions that can greatly enhance or suppress the vaporization of the components in the system compared to predictions from ideal mixing using Raoult's Law, especially for polar fuels. The present results using the UNIFAC method are shown to be able to capture the azeotropic behaviors of polar molecule blends, such as mixtures of benzene and ethanol, benzene and iso-propanol, and ethanol and water [1]. Predicted distillation curves of mixtures of ethanol and multi-component gasoline surrogates are compared to those from experiments, and the model gives good improvements on predictions of the distillation curves for initial ethanol volume fractions ranging from 0% to 100%.
Technical Paper

Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics

2007-04-16
2007-01-0165
In this paper, knock in a Ford single cylinder direct-injection spark-ignition (DISI) engine was modeled and investigated using the KIVA-3V code with a G-equation combustion model coupled with detailed chemical kinetics. The deflagrative turbulent flame propagation was described by the G-equation combustion model. A 22-species, 42-reaction iso-octane (iC8H18) mechanism was adopted to model the auto-ignition process of the gasoline/air/residual-gas mixture ahead of the flame front. The iso-octane mechanism was originally validated by ignition delay tests in a rapid compression machine. In this study, the mechanism was tested by comparing the simulated ignition delay time in a constant volume mesh with the values measured in a shock tube under different initial temperature, pressure and equivalence ratio conditions, and acceptable agreements were obtained.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

2003-03-03
2003-01-0011
A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
X