Refine Your Search

Topic

Author

Search Results

Technical Paper

Pre-Heating the Aftertreatment System with a Burner

2022-03-29
2022-01-0554
NOx emissions limits for commercial trucks will be drastically reduced in the United States and Europe later in this decade. The most recent Euro VII proposal suggested that pre-heating of the aftertreatment system with a diesel burner may be needed to meet a new low-NOx limit. Pre-heating serves to prepare the SCR catalyst so that it can begin to convert NOx almost immediately after the engine is started. This is particularly important for an engine that is not equipped with exhaust gas recirculation to reduce engine-out NOx. This study considered a burner installed between a 12.4 liter engine and an appropriately-sized in-line DOC/DPF/SCR aftertreatment system. Initially, a wide range of burner and air pump operating conditions were examined to determine the maximum fueling rate and corresponding air flow rate necessary to complete combustion and to convey the resultant heat downstream to the aftertreatment components.
Journal Article

Meeting Future NOX Emissions Over Various Cycles Using a Fuel Burner and Conventional Aftertreatment System

2022-03-29
2022-01-0539
The commercial vehicle industry continues to move in the direction of improving brake thermal efficiency while meeting more stringent diesel engine emission requirements. This study focused on demonstrating future emissions by using an exhaust burner upstream of a conventional aftertreatment system. This work highlights system results over the low load cycle (LLC) and many other pertinent cycles (Beverage Cycle, and Stay Hot Cycle, New York Bus Cycle). These efforts complement previous works showing system performance over the Heavy-Duty FTP and World Harmonized Transient Cycle (WHTC). The exhaust burner is used to raise and maintain the Selective Catalytic Reduction (SCR) catalyst at its optimal temperature over these cycles for efficient NOX reduction. This work showed that tailpipe NOX is significantly improved over these cycles with the exhaust burner.
Technical Paper

A Competitive Approach to an Active Exhaust Heat Recovery System Solution

2020-04-14
2020-01-0161
As greenhouse gas regulations continue to tighten, more opportunities to improve engine efficiency emerge, including exhaust gas heat recovery. Upon cold starts, engine exhaust gases downstream of the catalysts are redirected with a bypass valve into a heat exchanger, transferring its heat to the coolant to accelerate engine warm-up. This has several advantages, including reduced fuel consumption, as the engine’s efficiency improves with temperature. Furthermore, this accelerates readiness to defrost the windshield, improving both safety as well as comfort, with greater benefits in colder climates, particularly when combined with hybridization’s need for engine on-time solely for cabin heating. Such products have been in the market now for several years; however they are bulky, heavy and expensive, yielding opportunities for competitive alternatives.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
Technical Paper

Modeling of Aftertreatment Technologies to Meet a Future HD Low-NOx Standard

2019-01-15
2019-01-0043
The low-NOx standard for heavy duty trucks proposed by the California Air Resources Board represents a significant challenge to the engine and aftertreatment system. In this study, exhaust thermal management requirements were quantified using a combination of engine and aftertreatment modeling. First, a 1-D engine model was used to develop a control strategy capable of increasing the exhaust enthalpy and decreasing the engine-out NOx over the initial portion of the cold FTP cycle. The outputs from this model were then used as inputs to a 1-D model of a representative HD aftertreatment system. Several different passive exhaust thermal management technologies were evaluated with this aftertreatment system model, including insulating the downpipe, close-coupling the aftertreatment system, and reducing the thermal inertia of the DOC and DPF; the last option provides the most benefit to early NOx conversion.
Technical Paper

Data Analysis, Modeling, and Predictability of Automotive Events

2018-04-03
2018-01-0094
It is important to quantitatively characterize the automotive events in order to not only accurately interpret their past but also to reliably predict and forecast their short-term, medium-term, and even long-term future. In this paper, several automotive industry related events, i.e. vehicle safety, vehicle weight/HP ratio, the emissions of CO2, HC, CO, and NOx, are analyzed to find their general trends. Exponential and power law functions are used to empirically fit and quantitatively characterize these data with an emphasis on the two functions’ effectiveness in predictability. Finally, three empirical emission laws based on the historical HC, CO, and NOx data are proposed and the impact of these laws on emission control is discussed.
Technical Paper

Micro-Channel Heat Exchanger: An Exhaust Waste Heat Recovery Device

2018-04-03
2018-01-0052
Almost one-third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery (WHR) process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gases (GHG) emission. Currently, there are multiple WHR technologies that are being investigated by various entities in the auto industry. One relatively simple device to extract heat energy from the exhaust is a heat exchanger. Heat exchangers are used in some automotive applications to transfer heat from the hot exhaust gas to the colder coolant fluid to raise the coolant temperature. The warmer coolant fluid can be used for several purposes such as; faster heating of the engine’s lubrication oil and transmission fluids during cold starts, and faster cabin heating, which in turn, can potentially improve the overall engine efficiency and reduce exhaust emissions.
Technical Paper

Water Recovery from Gasoline Engine Exhaust for Water Injection

2018-04-03
2018-01-0369
Water injection (WI) can improve gasoline engine performance and efficiency, and on-board water recovery technology could eliminate the need for customers to refill an on-board water reservoir. In this regard, the technical feasibility of exhaust water recovery (EWR) is described in this paper. Water injection testing was conducted at a full load condition (5000 rpm/18.1 bar BMEP) and a high load condition (3000 rpm/14.0 bar BMEP) on a turbocharged gasoline direction injection (GTDI) engine. Water recovery testing was conducted both after the exhaust gas recirculation (EGR) cooler and after the charge air cooler (CAC) at a high load (3000 rpm/14.0 bar BMEP), as well as a part load (2080 rpm/6.8 bar BMEP) condition, at temperatures ca. 10-15 °C below the dew point of the flow stream. Three types of water separation designs were tested: a passive cyclone separator (CS), a passive membrane separator (MEM), and an active separator (AS).
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Technical Paper

Durability Analysis of 3-Axis Input to Elastomeric Front Lower Control Arm Vertical Ride Bushing

2017-06-05
2017-01-1857
Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
Journal Article

Statistical Characterization, Pattern Identification, and Analysis of Big Data

2017-03-28
2017-01-0236
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
Technical Paper

Clean EGR for Gasoline Engines – Innovative Approach to Efficiency Improvement and Emissions Reduction Simultaneously

2017-03-28
2017-01-0683
External Exhaust Gas Recirculation (EGR) has been used on diesel engines for decades and has also been used on gasoline engines in the past. It is recently reintroduced on gasoline engines to improve fuel economy at mid and high engine load conditions, where EGR can reduce throttling losses and fuel enrichment. Fuel enrichment causes fuel penalty and high soot particulates, as well as hydrocarbon (HC) emissions, all of which are limited by emissions regulations. Under stoichiometric conditions, gasoline engines can be operated at high EGR rates (> 20%), but more than diesel engines, its intake gas including external EGR needs extreme cooling (down to ~50°C) to gain the maximum fuel economy improvement. However, external EGR and its problems at low temperatures (fouling, corrosion & condensation) are well known.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Journal Article

Waste Heat Recovery for Light-Duty Truck Application Using ThermoAcoustic Converter Technology

2017-03-28
2017-01-0153
Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy.
Journal Article

Failure Mode Effects and Fatigue Data Analyses of Welded Vehicle Exhaust Components and Its Applications in Product Validation

2016-04-05
2016-01-0374
Vehicle exhaust components and systems under fatigue loading often show multiple failure modes, which should be treated, at least theoretically, with rigorous advanced bi-modal and multi-modal statistical theories and approaches. These advanced methods are usually applied to mission-critical engineering applications such as nuclear and aerospace, in which large amounts of test data are often available. In the automotive industry, however, the sample size adopted in the product validation is usually small, thus the bi-modal and multi-modal phenomena cannot be distinguished with certainty.
Technical Paper

Probabilistic Isothermal, Anisothermal, and High-Temperature Thermo-Mechanical Fatigue Life Assessment and CAE Implementations

2016-04-05
2016-01-0370
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
Technical Paper

Low Temperature SCR Catalysts Optimized for Cold-Start and Low-Load Engine Exhaust Conditions

2015-04-14
2015-01-1026
The main objective of this work is to develop a low-temperature SCR catalyst for the reduction of nitrogen oxides at cold start, low-idle and low-load conditions. A series of metal oxide- incorporated beta zeolite catalysts were prepared by adopting incipient wetness technique, cation-exchange, deposition-precipitation and other synthesis techniques. The resulting catalysts were characterized and tested for reduction of NOx in a fixed bed continuous flow quartz micro-reactor using ammonia as the reductant gas. Initial catalyst formulations have been exhibited good NOx reduction activity at low-temperatures. These catalyst formulations showed a maximum NOx conversion in the temperature range of 100 - 350°C. Besides, more experiments were performed with the aim of optimizing these formulations with respect to the metal atomic ratio, preparation method, active components and supported metal type.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Technical Paper

CFD Study of Sensitivity Parameters in SCR NOx Reduction Modeling

2014-09-30
2014-01-2346
The Diesel engine combustion process results in harmful exhaust emissions, mainly composed of Particulate Matter (PM), Hydro Carbon (HC), Carbon monoxide (CO) and Nitrogen Oxides (NOx). Several technologies have been developed in the past decades to control these diesel emissions. One of the promising and well matured technology of reducing NOx is to implement Selective Catalytic Reduction (SCR) using ammonia (NH3) as the reducing agent. For an effective SCR system, the aqueous urea solutions should be fully decomposed into ammonia and it should be well distributed across the SCR. In the catalyst, all the ammonia is utilized for NOx reduction process. In the design stage, it is more viable to implement Computational Fluid Dynamics (CFD) for design iterations to determine an optimized SCR system based on SCR flow distribution. And in later stage, experimental test is required to predict the after-treatment system performance based on NOx reduction.
Technical Paper

Virtual Test of Injector Design Using CFD

2014-09-30
2014-01-2351
Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows.
X