Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Multiphysics Simulation Supporting Systems Engineering for Fuel Cell Vehicles

2024-01-16
2024-26-0244
Legislative challenges, changing customer needs and the opportunities opened-up by electrification are the major driving forces in today’s automotive industry. Fuel cell vehicles offer the potential for CO2 emission free mobility, especially attractive for heavy duty long-haul range application. The development of key components of fuel cell powered vehicles, namely the fuel cell stack itself as well as the related hydrogen/air supply and thermal management sub-systems, goes hand in hand with various challenges regarding performance, lifetime and safety. The proper layout and sizing of the stack and the related fuel and air supply system components, as well as the suitable dimensioning of the cooling system, are decisive for the overall system efficiency and achievable lifetime.
Technical Paper

Numerical Study of the Fuel Efficiency and the Thermal Management of a Fuel Cell Powered Long-Haul Vehicle

2023-04-11
2023-01-0764
In the future, conventional powertrains will increasingly be supplied by sustainable energy sources. Long-haul freight transport requires efficient energy storage and the ability to refuel quickly. For this reason, hydrogen-powered PEM fuel cells are being discussed as a future energy source for long-distance vehicles. However, there are numerous challenges in packaging, system cooling and service life. Above all, the dissipation of the fuel cell’s heat losses places high demands on the design of the cooling system due to the relatively low operating temperature. In the presented study, a complete generic drive train of a long-distance commercial vehicle was set up within a suitable simulation environment to investigate the required sizes of the fuel cell stack, the HV battery, the hydrogen tanks, and the cooling circuit.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

Comparison of Different Fuel Operations of a Multi-Fuel Single-Disk Rotary Engine through Thermodynamic Analysis

2022-04-28
2022-01-5032
Today unmanned aerial vehicle applications are powered by Wankel rotary engines due to their high power-to-weight ratio and smooth operation. Most of modern propulsion units for unmanned aerial vehicles are designed to run on high volatile fuels such as aviation gasoline (AvGas). However, the refueling infrastructure in aviation is geared toward the most used aviation fuel, kerosene. This and other reasons, such as significantly lower price and easier fire protection regulations, lead to the desire to be able to operate these propulsion units with kerosene. Opposed to reciprocating engines, the low compression ratio of rotary engines prevents the implementation of compression ignition combustion processes. Therefore, the purpose of this paper is to discuss the operation of a spark-ignited rotary engine on different fuels. In detail, different qualities of kerosene as well as gasoline/kerosene blends are compared together.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-04-06
2021-01-0328
Eliminating toxic exhaust emissions, amongst them particulate matter (PM), is one of the driving factors behind the increasing use of electrified vehicles. However, it is frequently overseen that PM arise not only from combustion, but from non-exhaust traffic related causes as well; in particular from the vehicle brakes, tires and the road surface. Furthermore, as electrified vehicles weigh more and typically exhibit higher torques at low speeds, their non-exhaust emissions tend to be higher than for comparable conventional vehicles, especially those generated by tires. Fortunately, tire related emissions are directly related to tire wear, so that limiting tire wear can reduce these emissions as well. This can be accomplished by intelligently modulating the vehicle torque profile in real time, to limit the operation in conditions of higher tire wear.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Analytical Methodology to Derive a Rule-Based Energy Management System Enabling Fuel-Optimal Operation for a Series Hybrid

2020-09-15
2020-01-2257
Due to the continuous electrification of vehicles, the variety of different hybrid topologies is expected to increase in the future. As the calibration of real-time capable energy management systems (EMS) is still challenging, a development framework for the EMS that is independent of the hybrid topology would simplify the overall development process of hybrid vehicles. In this paper an analytical methodology, which is used to derive a fuel-optimal, rule-based EMS for parallel hybrids, is transferred to a series topology. It is shown that the fundamental correlations can be applied universally to both parallel and series configurations. This enables the possibility to develop a real-time capable, rule-based controller for a series HEV based on maps that ensures a fuel-optimal operation. These maps provide the optimal power threshold for the activation of the auxiliary power unit and the optimal power output dependent on the driver’s power request.
Technical Paper

Energetic Costs of ICE Starts in (P)HEV - Experimental Evaluation and Its Influence on Optimization Based Energy Management Strategies

2019-09-09
2019-24-0203
The overall efficiency of hybrid electric vehicles largely depends on the design and application of its energy management system (EMS). Despite the load coordination when operating the system in a hybrid mode, the EMS accounts for state changes between the different driving modes. Whether a transition between pure electric driving and internal combustion engine (ICE) powered driving is beneficial depends, among others, on the respective operation point, the route ahead as well as on the energetic expense for the engine start itself. The latter results from a complex interaction of the powertrain components and has a tremendous impact on the efficiency and quality of EMSs. Optimization based methods such as dynamic programming serve as benchmark for the design process of rule based control strategies. In case no energetic expenses are assigned to a state change, the resulting EMS suffers from being sub-optimal regarding the fuel consumption.
Technical Paper

Efficiency Prediction for Optimal Load Point Determination of Internal Combustion Engines in Hybrid Drives

2019-09-09
2019-24-0204
The efficiency of a Hybrid Electric Vehicle (HEV) strongly depends on its implemented Energy Management Strategy (EMS) that splits the driver’s torque request onto the Internal Combustion Engine (ICE) and Electric Motor (EM). For calibrating these EMS, usually, steady-state efficiency maps of the power converters are used. These charts are mainly derived from measurements under optimal conditions. However, the efficiency of ICEs fluctuates strongly under different conditions. Among others, these fluctuations can be induced by charge air temperature, engine oil temperature or the fuel’s knock resistance. This paper proposes a new approach for predicting the impact of any external influence onto the ICE efficiency. This is done by computing the actual deviation from the optimal reference ignition timing and adjusting the result by actual oil temperature and target air-to-fuel ratio.
Technical Paper

Modular and Swappable 48V Battery Systems for Emerging Markets

2019-01-09
2019-26-0032
Electrification globally shows promise in reducing greenhouse and noxious emissions. Although there is immense potential in such technologies penetrating across vehicle segments in the Indian market, the key lies in offering scalable, cost effective battery solutions suiting the diverse product and customer needs. This paper describes the development and possible applications of a low voltage battery system that fulfills the current needs on the Indian market. Based on real-world driving profiles the energy and power output required for the target platform are determined. Keeping in mind the Indian operating conditions, safety requirements, driving behavior, charging infrastructure, operational costs, supplier network and serviceability, technical requirements for such systems are described. Also, benchmarking data of current battery systems help to optimize the mechanical, thermal, and electrical layouts.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1249
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1805
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
Technical Paper

Integrated Toolchain for Powertrain Optimization for Indian Commercial Vehicles

2015-01-14
2015-26-0032
Best fuel efficiency is one of the core requirements for commercial vehicles in India. Consequently it is a central challenge for commercial vehicle OEMs to optimize the entire powertrain, hence match engine, transmission and rear axle specifications best to the defined application. The very specific real world driving conditions in India (e.g. traffic situations, road conditions, driver behavior, etc.) and the large number of possible commercial powertrain combinations request an efficient and effective development methodology. This paper presents a methodology and tool chain to specify and develop commercial powertrains in a most efficient and effective way. The methodology is based on the measurement of real world driving scenarios, identification of representative Real World Driving Profiles and vehicle system simulation which allows extended analysis of the road topography, the traffic situation as well as the driver behavior.
X