Refine Your Search

Topic

Author

Search Results

Technical Paper

Road Snow Coverage Estimation Using Camera and Weather Infrastructure Sensor Inputs

2023-04-11
2023-01-0057
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Microsimulation-Based Evaluation of an Eco-Approach Strategy for Automated Vehicles Using Vehicle-in-the-Loop

2021-04-06
2021-01-0112
Connected and automated technologies poised to change the way vehicles operate are starting to enter the mainstream market. Methods to accurately evaluate these technologies, in particular for their impact on safety and energy, are complex due to the influence of static and environmental factors, such as road environment and traffic scenarios. Therefore, it is important to develop modeling and testing frameworks that can support the development of complex vehicle functionalities in a realistic environment. Microscopic traffic simulations have been increasingly used to assess the performance of connected and automated vehicle technologies in traffic networks. In this paper, we propose and apply an evaluation method based on a combination of microscopic traffic simulation (AIMSUN) and a chassis dynamometer-based vehicle-in-the-loop environment, developed at Argonne National Laboratory.
Technical Paper

Experimental Evaluation of Longitudinal Control for Automated Vehicles through Vehicle-in-the-Loop Testing

2020-04-14
2020-01-0714
Automated driving functionalities delivered through Advanced Driver Assistance System (ADAS) have been adopted more and more frequently in consumer vehicles. The development and implementation of such functionalities pose new challenges in safety and functional testing and the associated validations, due primarily to their high demands on facility and infrastructure. This paper presents a rather unique Vehicle-in-the-Loop (VIL) test setup and methodology compared those previously reported, by combining the advantages of the hardware-in-the-loop (HIL) and traditional chassis dynamometer test cell in place of on-road testing, with a multi-agent real-time simulator for the rest of test environment.
Journal Article

Internal Nozzle Flow Simulations of the ECN Spray C Injector under Realistic Operating Conditions

2020-04-14
2020-01-1154
In this study, three-dimensional large eddy simulations were performed to study the internal nozzle flow of the ECN Spray C diesel injector. Realistic nozzle geometry, full needle motion, and internal flow imaging data obtained from X-ray measurements were employed to initialize and validate the CFD model. The influence of injection pressure and fuel properties were investigated, and the effect of mesh size was discussed. The results agreed well with the experimental data of mass flow rate and correctly captured the flow structures inside the orifice. Simulations showed that the pressure drop near the sharp orifice inlet triggered flow separation, resulting in the ingestion of ambient gas into the orifice via a phenomenon known as hydraulic flip. At higher injection pressure, the pressure drop was more significant as the liquid momentum increased and the stream inertia was less prone to change its direction.
Technical Paper

Improvements to a CFR Engine Three Pressure Analysis GT-Power Model for HCCI and SI Conditions

2020-01-24
2019-32-0608
While experimental data measured directly on the engine are very valuable, there is a limitation of what measurements can be made without modifying the engine or the process that is being investigated, such as cylinder temperature. In order to supplement the experimental results, a Three Pressure Analysis (TPA) GT-Power model of the Cooperative Fuel Research (CFR) engine was previously developed and validated for estimating cylinder temperature and residual fraction. However, this model had only been validated for normal and knocking spark ignition (SI) combustion with RON-like intake conditions (naturally aspirated, <52 °C). This work presents improvements made to the GT-Power model and the expansion of its use for HCCI combustion. The burn rate estimation sub-model was modified to allow for low temperature heat release estimation and compression ignition operation.
Technical Paper

On-Track Measurement of Road Load Changes in Two Close-Following Vehicles: Methods and Results

2019-04-02
2019-01-0755
As emerging automated vehicle technology is making advances in safety and reliability, engineers are also exploring improvements in energy efficiency with this new paradigm. Powertrain efficiency receives due attention, but also impactful is finding ways to reduce driving losses in coordinated-driving scenarios. Efforts focused on simulation to quantify road load improvements require a sufficient amount of background validation work to support them. This study uses a practical approach to directly quantify road load changes by testing the coordinated driving of two vehicles on a test track at various speeds (64, 88, 113 km/h) and vehicle time gaps (0.3 to 1.3 s). Axle torque sensors were used to directly measure the load required to maintain steady-state speeds while following a lead vehicle at various gap distances.
Technical Paper

Statistical Analysis of Fuel Effects on Cylinder Conditions Leading to End-Gas Autoignition in SI Engines

2019-04-02
2019-01-0630
Currently there is a significant research effort being made in gasoline spark/ignition (SI) engines to understand and reduce cycle-to-cycle variations. One of the phenomena that presents this cycle-to-cycle variation is combustion knock, which also happens to have a very stochastic behavior in modern SI engines. Conversely, the CFR octane rating engine presents much more repeatable combustion knock activity. The aim of this study is to assess the impact of fuel composition on the cycle to cycle variation of the pressure and timing of end gas autoignition. The variation of cylinder conditions at the timing of end-gas autoignition (knock point) for a wide selection of cycle ensembles have been analyzed for several constant RON 98 fuels on the CFR engine, as well as in a modern single-cylinder gasoline direct injection (GDI) SI engine operated at RON-like intake conditions.
Technical Paper

Fuel and Engine Effects on Rich-Combustion Products as an Enabler of In-Cylinder Reforming

2019-04-02
2019-01-1144
Onboard reforming has been proposed as a strategy for improving spark-ignited (SI) engine efficiency through knock reduction, dilution limit extension, improved thermodynamic gas properties, and thermochemical exhaust enthalpy recuperation. One approach to onboard fuel reforming is to combust fuel in the engine cylinder under rich conditions, producing a hydrogen-rich reformate gas--which can subsequently be recirculated into the engine. Hydrogen is the preferred product in this process due to its high flame speed and knock resistance, compared with other reformate constituents. In this work, the effects of engine operation, fuel composition and water injection were evaluated for their effect on reformate gas composition produced under rich combustion conditions. Engine parameters, including intake pressure, intake temperature, combustion phasing, and valve timing all had no significant impact on hydrogen yield at a given equivalence ratio.
Journal Article

Effects of Lambda on Knocking Characteristics and RON Rating

2019-04-02
2019-01-0627
The knock resistance of fuels has been historically measured using the ASTM RON and MON methods. However, significant discrepancies between the fuel octane number and knock-limited performance in modern spark-ignited (SI) engines have been well-documented. Differences between the operating conditions of the Cooperative Fuels Research (CFR) engine during RON rating and those attained in modern SI engines have been highlighted in the literature. While octane ratings are performed for each fuel on the CFR engine at the lambda that provides the highest knockmeter reading, modern SI engines are generally operated at stoichiometry and knock intensity is based on the high frequency cylinder pressure oscillations associated with knocking combustion. In the present work, an instrumented CFR engine was used to analyze lambda effects on both the conventional knockmeter RON rating method and cylinder pressure transducer based knock intensity.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine

2019-01-15
2019-01-0006
Combustion cycle-to-cycle variation (CCV) of Spark-Ignition (SI) engines can be influenced by the cyclic variations in charge motion, trapped mass and mixture composition inside the cylinder. A high CCV leads to misfire or knock, limiting the engine’s operating regime. To understand the mechanism of the effect of flow field and mixture compositions on CCV, the present numerical work was performed in a single cylinder Direct Injection Spark-Ignition (DISI) engine. A large eddy simulation (LES) approach coupled with the G-equation combustion model was developed to capture the CCV by accurately resolving the turbulent flow field spatially and temporally. Further, the ignition process was modeled by sourcing energy during the breakdown and arc phases with a line-shape ignition model which could move with the local flow. Detailed chemistry was solved both inside and outside the flame front. A compact 48-species 152-reactions primary reference fuel (PRF) reduced mechanism was used.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Journal Article

Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel

2018-04-03
2018-01-0270
Experimental data and modeling work have shown that gasoline-like fuels can potentially be used to simultaneously achieve high efficiency and low pollutant emissions in compression ignition engines. Demonstrating that existing hardware systems are tolerant to these fuels is a key step in harnessing this potential. In this study, a 400-hour North Atlantic Treaty Organization (NATO) test cycle was used to assess the overall robustness of a Cummins XPI common-rail injection system operating with gasoline-like fuel. The cycle was designed to accelerate wear and identify any significant failure modes that could appear under normal operating conditions. Although prior work has investigated injection system durability with a wide variety of alternative fuels, this study uniquely focuses on a high-volatility, low-viscosity, gasoline-like fuel that has been dosed with lubricity additive.
Technical Paper

Investigating Steady-State Road Load Determination Methods for Electrified Vehicles and Coordinated Driving (Platooning)

2018-04-03
2018-01-0649
Reductions in vehicle drive losses are as important to improving fuel economy as increases in powertrain efficiencies. In order to measure vehicle fuel economy, chassis dynamometer testing relies on accurate road load determinations. Road load is currently determined (with some exceptions) using established test track coastdown testing procedures. Because new vehicle technologies and usage cases challenge the accuracy and applicability of these procedures, on-road experiments were conducted using axle torque sensors to address the suitability of the test procedures in determining vehicle road loads in specific cases. Whereas coastdown testing can use vehicle deceleration to determine load, steady-state testing can offer advantages in validating road load coefficients for vehicles with no mechanical neutral gear (such as plug-in hybrid and electric vehicles).
Technical Paper

Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions

2018-04-03
2018-01-0848
The CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interest in engine downsizing, up-torquing, and alternative fuels for modern spark ignition (SI) engines, there is a need to better understand the conditions that fuels are subjected to in the CFR engine during octane rating. To take into account fuel properties, such as fuel heat of vaporization, laminar flame speed and auto-ignition chemistry; and understand their impacts on combustion knock, it is essential to estimate accurate cylinder conditions. In this study, the CFR F1/F2 engine was modeled using GT-Power with the Three Pressure Analysis (TPA) and the model was validated for different fuels and engine conditions.
Journal Article

Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine

2018-04-03
2018-01-0210
Of late there has been a resurgence in studies investigating parameters that quantify combustion knock in both standardized platforms and modern spark-ignition engines. However, it is still unclear how metrics such as knock (octane) rating, knock onset, and knock intensity are related and how fuels behave according to these metrics across a range of conditions. As part of an ongoing study, the air supply system of a standard Cooperative Fuel Research (CFR) F1/F2 engine was modified to allow mild levels of intake air boosting while staying true to its intended purpose of being the standard device for American Society for Testing and Materials (ASTM)-specified knock rating or octane number tests. For instance, the carburation system and intake air heating manifold are not altered, but the engine was equipped with cylinder pressure transducers to enable both logging of the standard knockmeter readout and state-of-the-art indicated data.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
X