Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Investigation of the Effect of Piston Geometry on the Performance of a Ducted Fuel Injection Engine

2024-07-02
2024-01-3024
Ducted Fuel Injection (DFI) engines have emerged as a promising technology in the pursuit of a clean and efficient combustion process. This article aims at elucidating the effect of piston geometry on the engine performance and emissions of a metal DFI engine. Three different types of pistons were investigated and the main piston design features including the piston bowl diameter, piston bowl slope angle, duct angle and the injection nozzle position were examined. To achieve the target, computational fluid dynamics (CFD) simulations were conducted coupled to a reduced chemical kinetics mechanism. Extensive validations were performed against the measured data from a conventional diesel engine. To calibrate the soot model, genetic algorithm and machine learning methods were utilized. The simulation results highlight the pivotal role played by piston bowl diameter and fuel injection angle in controlling soot emissions of a DFI engine.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Technical Paper

Influence of Working Conditions and Operating Parameters on the Energy Consumption of a Full-Electric Bus. Experimental Assessment

2024-04-09
2024-01-2174
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption.
Technical Paper

CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine

2024-04-09
2024-01-2102
The abatement of carbon dioxide and pollutant emissions on motorbike spark-ignition (SI) engines is a challenging task, considering the small size, the low cost and the high power-to-weight ratio required by the market for such powertrain. In this context, the passive pre-chamber (PPC) technology is an attractive solution. The combustion duration can be reduced by igniting the air-fuel mixture inside a small volume connected to the cylinder, unfolding the way to high engine efficiencies without penalization of the peak performance. Moreover, no injectors are needed inside the PPC, guaranteeing a cheap and fast retrofitting of the existing fleet. In this work, a 3D computational fluid dynamics (CFD) investigation is carried out over an experimental configuration of motorbike SI engine, operated at fixed operating conditions with both traditional and PPC configurations.
Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Methanol Mixing-Controlled Compression Ignition with Ignition Enhancer for Off-Road Engine Operation

2024-04-09
2024-01-2701
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically seen as an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, the potential of using ignition enhancers to enable methanol MCCI combustion was investigated. Methanol was blended with 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel research engine, which has a displacement volume of 0.83 L and compression ratio of 16:1. The effect of EHN has been evaluated with three different levels (3%vol, 5%vol, and 7%vol) under low- and part-load conditions. The injection timing has been swept to find the stable injection window for each EHN level and load.
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

From Idle to 7.5 Bar IMEPg – Using Fuel Stratification to Control LTGC with Next-Cycle Capability

2024-04-09
2024-01-2821
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies with very low NOx and soot emissions, but rapid control of the combustion timing remains a challenge. Partial Fuel Stratification (PFS) was demonstrated to be an effective approach to control combustion in LTGC engines. PFS is produced by a double-direct injection (DI) strategy with most of the fuel injected early in the cycle and the remainder of the fuel supplied by a second injection at a variable time during the compression stroke to vary the amount of stratification. Adjusting the stratification changes the combustion phasing, and this can be done on cycle-to-cycle basis by adjusting the injection timing. In this paper, the ability of PFS to control the combustion during wide engine load sweeps is assessed for regular gasoline and gasoline doped with 2-ethylhexyl nitrate (EHN). For PFS, the load control range is limited by combustion instability and poor combustion efficiency at low loads.
Technical Paper

Deflagration-Based Knock of Methanol SI Combustion and its Implications for Combustion Noise

2024-04-09
2024-01-2819
Methanol emerges as a compelling renewable fuel for decarbonizing engine applications due to a mature industry with high production capacity, existing distribution infrastructure, low carbon intensity and favorable cost. Methanol’s high flame speed and high autoignition resistance render it particularly well-suited for spark-ignition (SI) engines. Previous research showed a distinct phenomenon, known deflagration-based knock in methanol combustion, whereby knocking combustion was observed albeit without end-gas autoignition. This work studies the implications of deflagration-based knock on noise emissions by investigating the knock intensity and combustion noise at knock-limited operation of methanol in a single-cylinder direct-injection SI engine operated at both stoichiometric and lean (λ = 2.0) conditions. Results are compared against observations from a premium-grade gasoline.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Full-Scale CFD Prediction of the Performance of Advanced After-Treatment Systems during Severe RDE Test Cycle

2024-04-09
2024-01-2624
Air pollution is a significant environmental issue, and exhaust emissions from internal combustion engines are one of the primary sources of harmful pollutants. The transportation sector, which includes road vehicles, contributes to a large share of these emissions. In Europe, the latest emission legislation (Euro 7) proposes more stringent limits and testing conditions for vehicle emissions. To meet these limits, the automotive industry is actively developing innovative exhaust emission-control technologies. With the growing prevalence of electrification, internal combustion engines are subject to continuous variations in load and engine speed, including phases where the engine is switched off. The result is an operating condition characterized by successive cold starts. In this context, the challenge in coping with the emission limits is to minimize the light-off time and prevent fast light-out conditions during idling or city driving.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Comprehensive Assessment of Gasoline Spray Robustness for Different Plume Arrangements

2024-04-09
2024-01-2620
Ensuring spray robustness of gasoline direct injection (GDI) is essential to comply with stringent future emission regulations for hybrid and internal combustion engine vehicles. This study presents experimental and numerical assessments of spray for lateral-mounted GDI sprays with two different plume arrangements to analyze spray collapse characteristics, which can significantly deteriorate the atomization performance of fuel sprays. Novel spray characterization methods are applied to analyze complex spray collapse behaviors using diffusive back-illuminated extinction imaging (DBIEI) and 3D computed tomographic (CT) image reconstruction. A series of computational fluid dynamics (CFD) simulations are performed to analyze the detailed spray characteristics besides experimental characterization. Spatio-temporal plume dynamics of conventional triangle-pattern spray are evaluated and compared to a plume pattern with an inversed T pattern that has more open space between plumes.
Technical Paper

Effect of Cyclo-Pentane Impurities on the Autoignition Reactivity and Properties of a Gasoline Surrogate Fuel

2024-02-16
2024-01-5021
Surrogate fuels that reproduce the characteristics of full-boiling range fuels are key tools to enable numerical simulations of fuel-related processes and ensure reproducibility of experiments by eliminating batch-to-batch variability. Within the PACE initiative, a surrogate fuel for regular-grade E10 (10%vol ethanol) gasoline representative of a U.S. market gasoline, termed PACE-20, was developed and adopted as baseline fuel for the consortium. Although extensive testing demonstrated that PACE-20 replicates the properties and combustion behavior of the full-boiling range gasoline, several concerns arose regarding the purity level required for the species that compose PACE-20. This is particularly important for cyclo-pentane, since commercial-grade cyclo-pentane typically shows 60%–85% purity. In the present work, the effects of the purity level of cyclo-pentane on the properties and combustion characteristics of PACE-20 were studied.
Technical Paper

Investigating molecular decomposition via high-speed laser-induced Rayleigh scattering

2023-09-29
2023-32-0118
Molecular decomposition is a key chemical process in combustion systems. Particularly, the spatio-temporal information related to a fuel’s molecular breakdown is of high-importance regarding the development of combustion models and more specifically about chemical kinetic mechanisms. Most experiments rely on a variety of ultraviolet or infrared techniques to monitor the fuel breakdown process in 0-D type experiments such as those performed in shock-tubes or rapid compression machines. While the information provided by these experiments is necessary to develop and adjust kinetic mechanisms, they fail to provide the necessary data for applied combustion models to be predictive regarding the fuel’s molecular breakdown. In this work, we investigated the molecular decomposition of a fuel by applying high-speed planar laser Rayleigh scattering (PLRS).
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Technical Paper

Residual Gas Fraction Measurement and Estimation of the CFR Octane Rating Engine Operating Under HCCI Conditions

2023-09-29
2023-32-0010
The autoignition chemistry of fuels depends on the pressure, temperature, and time history that the fuel-air mixture experiences during the compression stroke. While piezoelectric pressure transducers offer excellent means of pressure measurement, temperature measurements are not commonly available and must be estimated. Even if the pressure and temperature at the intake and exhaust ports are measured, the residual gas fraction (RGF) within the combustion chamber requires estimation and greatly impacts the temperature of the fresh charge at intake valve closing. This work replaced the standard D1 Detonation Pickup of a CFR engine with a rapid sampling valve to allow for in-cylinder gas sampling at defined crank-angle times during the compression stroke. The extracted cylinder contents were captured in an emissions sample bag and its composition was subsequently analyzed in an AVL i60 emissions bench.
X