Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Improvement of Transient Response on a Downsized 4 Cylinder Engine for Automobile Application

2021-10-01
2021-28-0280
Ever since mainstreaming of automobiles, engineers are focusing on making the vehicles better by means of making them more efficient, powerful and less polluting. In this study, venues of improving low end torque via improvement in volumetric efficiency as well as proper selection of turbochargers is done. An in-depth analysis of gas dynamics with respect to valve timing is studied along with the AVL Boost 1D simulation. It was found that volumetric efficiency starts to improve when there is a reduction in exhaust - exhaust valve overlap. There is an improvement found in the fresh air ratio (lambda) as the residual gas content is reduced. After the selection of valve timing, turbocharger optimization is done with comparison between two turbine sizes. Along with turbocharger comparison, technology comparison is also done namely between normal electronic VGT (Variable Geometry Turbo) (bigger turbine) and electronic VGT coupled with waste gate (smaller turbine).
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

Pass-by Noise Generating System in Battery Electric Vehicle

2020-09-25
2020-28-0432
Battery Electric Vehicles (BEVs) are gaining momentum all around the world and India is not far behind in terms of EV sales. The principle difference between BEVs and Internal Combustion Engine based Vehicles (hereafter known as ICEs) is that BEVs run on electric motors and don’t have Internal Combustion based engines that generate significant noise while running. The engine noise contributes to noise pollution, but it is useful in alerting the pedestrians about the incoming vehicle and can function as a passive safety system. The lack of such noise can be a safety threat to pedestrians, cyclists, wildlife etc. Many countries around the world have mandated, or are in the process of mandating, a pass-by noise generating system to alert pedestrians about the incoming vehicle. This paper is an attempt to study various pass-by noise generating systems used worldwide in electric four-wheelers.
Technical Paper

Optimization of Accelerator Pedal Map for Improving the Low-End Performance Feel of an Electric Vehicle

2020-09-25
2020-28-0505
In recent times, Battery electric vehicles (BEV) have gained a lot of popularity since they can contribute immensely to control the urban air pollution. However, to consider the BEVs as a sustainable mobility solution, a significant improvement is needed in several aspects including performance, range, cost, weight and recharging time. In the present work, the acceleration performance of an electric vehicle is improved to match with its diesel variant by optimizing the accelerator pedal map strategy. Due to weight and cost constraints, the battery and electric machine capacity of the electric variant of the vehicle was considerably lower (41 % lesser power and 44% lesser torque). However, the expectation from the customers is to have no noticeable difference in the low-end performance feel between the variants.
Technical Paper

Thermodynamic Analysis of Turbocharger for a High Power Density Diesel Engine

2019-01-09
2019-26-0051
Passenger cars claim their presence in market by its pick up, top speed and maximum power of the engine. The study described in this paper is focused on improving the low-end performance of a 4-cylinder 1.6 L diesel engine while meeting the targeted maximum power. To meet the cause turbocharger works as an important element of the engine. A comparative study between regulated two stage turbocharger (R2S) and variable geometry turbocharger (VGT) shows that on a 4-cylinder engine VGT is superior by providing higher boost at 1000 engine rpm full load, than R2S, while in 3-cylinder (same displacement) the opposite effect can be seen. After simulations and iterations, it was confirmed that the in 4-cylinder the exhaust pulse cancellation were leading to a lesser exhaust energy at the turbine inlet. This pulse interaction leads to higher residual gas content which affects the low-end performance.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Optimization of Oil Separation Unit for Two Stage Turbocharged Engine

2018-07-09
2018-28-0066
In addition to performance target, recent stringent emission legislation and reduction in oil consumption are the major driving force for engine design and development. In this reference importance of crankcase ventilation has increased immensely and the manufacturers are bound to develop most efficient system with high oil trap efficiency. In crankcase ventilation system, the blow-by gases from the crankcase are routed to the intake manifold through Oil separator system. The oil separator task is to retain the oil part from the blow by gas and send it back to sump. Developing an oil separator for the engine studied here was very challenging considering double stage turbocharger which produces very fine mist of oil and is difficult to separate. The study shows that oil mist coming in blow by is of size 0.3 micron and lesser than it. The major contribution of these fine mists was from turbocharger.
Technical Paper

Low Rolling Resistance Tires and Their Impact on Electric Vehicles

2017-07-10
2017-28-1941
This paper details the methodology used to show the importance of Low rolling resistance tires in Electric Vehicles. Fuel efficiency and range is paramount with most of the electric vehicle buyers. Although many people are now becoming aware of low rolling resistance tires but its development started way back in 1990’s. It is always challenging to achieve low rolling resistance in smaller tires of size 12 inch or 13 inch along meeting the other critical vehicle parameters such as ride and handling, NVH, durability and many more. The reduction in rolling resistance can also affect the traction properties of tires. In case of very low rolling resistance tires the traction will be very less but it can badly affect the other vehicle parameters. Selection of tires further depend upon the RWUP (Real World Usage Profile). It means the vehicle is targeted for which region and what is the condition of roads there.
Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
X