Refine Your Search

Topic

Author

Search Results

Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Journal Article

Simulation and Its Contribution to Evaluate Highly Automated Driving Functions

2019-04-02
2019-01-0140
A key criterion for launching autonomous vehicles on real roads is the knowledge of their capability to ensure traffic safety. In contrast to ADAS, deriving this measure of safety is difficult to achieve as the functional scope of an autonomous driving function exceeds by far the one of ADAS. As a consequence, real-world testing solely is not sufficient enough to cover the required test volume. This assessment problem imposes new requirements on a valid test concept for automated driving. A possible solution represents simulation by enabling it to generate reliable test kilometers. As a first step, we discuss in this paper the feasibility of simulation frameworks to re-simulate a real-world test in certain scenarios. We will demonstrate that even with ground truth information of the vehicle odometry and corresponding environment model an acceptable accordance of functional behavior is not guaranteed.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Technical Paper

System Level Design Simulation to Predict Passive Safety Performance for CFRP Automotive Structures

2013-04-08
2013-01-0663
Despite increasingly stringent crash requirements, the body structures of future mainstream production cars need to get lighter. Carbon fiber reinforced polymer (CFRP) composites with a density 1/5th of steel and very high specific energy absorption represent a material technology where substantial mass can be saved when compared to traditional steel applications. BMW have addressed the demanding challenges of producing several hundred composite Body-in-White (BIW) assemblies a day and are committed to significant adoption of composites in future vehicle platforms, as demonstrated in the upcoming i3 and i8 models. A next step to further integrate composites into passenger cars is for primary structural members, which also perform critical roles in passive safety by absorbing large amounts of energy during a crash event.
Journal Article

Psychoacoustic Requirements for Warning Sounds of Quiet Cars

2012-06-13
2012-01-1522
According to upcoming legislative regulations in certain countries, electric and hybrid-electric vehicles (EVs and HEVs) will have to be equipped with devices to compensate for the lack of engine noise needed to warn pedestrians against the vehicles. This leads to the question of appropriate sound design which has to meet specific psychoacoustic requirements. The present paper focuses on auditory features of warning sounds to enhance pedestrians' safety with a major focus on the detectability of the exterior noise of the vehicle in an ambient noise. For the evaluation of detectability, the psychoacoustic model developed by Kerber and Fastl will be introduced allowing for the prediction of masked thresholds of the approaching vehicle. The instrumental assessment yields estimates of the distance of an approaching vehicle at the point it becomes audible to the pedestrians.
Technical Paper

Injury Risk to Specific Body Regions of Pedestrians in Frontal Vehicle Crashes Modeled by Empirical, In-Depth Accident Data

2010-11-03
2010-22-0006
Evaluation of safety benefits is an essential task during design and development of pedestrian protection systems. Comparative evaluation of different safety concepts is facilitated by a common metric taking into account the expected human benefits. Translation of physical characteristics of a collision, such as impact speed, into human benefits requires reliable and preferably evidence-based injury models. To this end, the dependence of injury severity of body regions on explanatory factors is quantified here using the US Pedestrian Crash Data Study (PCDS) for pedestrians in frontal vehicle collisions. The explanatory and causal factors include vehicle component characteristics, physiological and biomechanical variables, and crash parameters. Severe to serious injuries most often involve the head, thorax and lower extremities.
Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Journal Article

An Approach to Model Sheet Failure After Onset of Localized Necking in Industrial High Strength Steel Stamping and Crash Simulations

2008-04-14
2008-01-0503
In large-scale industrial simulations the numerical prediction of fracture in sheet metal forming operations as well as in crash events is still a challenging task of high social and economic relevance. Among several approaches presented in literature, the authors and their colleagues developed a model which accounts each for three different mechanisms leading finally to fracture in thin sheet metals: the local instability (necking), ductile normal fracture and ductile shear fracture. The focus of this paper is to develop and validate a new approach to improve the predictive capabilities for fracture triggered by localized necking for a wide variety of steel grades. It is well known that after the onset of a local instability additional strain is still necessary to induce fracture. In a numerical simulation using shell elements this post instability strain becomes of increasing importance when the ratio of the characteristic shell element edge length to its thickness decreases.
Technical Paper

Contemporary Crash Analysis as a Building Block in Holistic Multidisciplinary Structural Analysis

2008-04-14
2008-01-1127
The trend in the previous years showed that an ideal product is not obtained as a sum of development results of several separated disciplines but rather as a result of a holistic multidisciplinary CAE approach. In the course of the whole component development process it is necessary to consider all functions of an individual component equivalent to their importance in the system as a whole, in order to achieve both a technical and a financial optimum. The predictability and the accuracy of an individual computational method have to be regarded against the background of the entire simulation process. A continuative CAE-standard and a harmonious interaction between the different computational disciplines promise more success than focusing specifically on individual topics and thereby neglecting the “bigger picture”. This awareness provided the basis for a decision to change the entire crash simulation software to ABAQUS.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

A Modern Development Process to Bring Silence Into Interior Components

2007-04-16
2007-01-1219
Comfort and well-being have always been connected with a flawless interior acoustic, free of any background noise or BSR, (buzz, squeak and rattle). BSR noises dominate the interior acoustic and represent one of the main sources for discomfort often causing considerable warranty costs. Traditionally BSR issues have been identified and rectified through extensive hardware testing, which by its nature intensifies toward the end of the car development process. In the following paper the integration of a virtual BSR validation technique in a modern development process by the use of appropriate CAE methods is presented. The goal is to shift, in compliance with the front loading concept, the development activities into the early phase. The approach is illustrated through the example of an instrument panel, from the early concept draft for single components to an assessment of the complete assembly.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Computational Approach for Entry Simulation

2006-07-04
2006-01-2358
A comprehensive experimental study was conducted to investigate human movements when entering a vehicle. The primary goal of this study was to understand the influence of environmental changes on entry motions selected by a driver to enter a vehicle. The adjustable hardware setup “VEMO” (Variable Entry Mockup) was used for the experiments. With VEMO it is possible to simulate different types and classes of vehicle configurations. Around 30 test persons of different anthropometry participated in the experiments. The visual measurement system VICON was used for motion capturing, motion data cleaning and biomechanical analysis. The results corroborate the theory of leading body parts (LBPs) i.e. body parts that control targeted movement of the entire body. It could be demonstrated how motion patterns of LBPs, including spatial and dynamic characteristics such as orientation and velocity, respond to modifications of the geometrical environment.
Technical Paper

Ergonomic Layout Process for a Driver Working Place in Cars

2006-07-04
2006-01-2313
During early phases of interior car layout a lot of different aspects have to be considered like crashworthiness, regulations, philosophy of the company etc.. Ergonomic aspects do not always play the most important role in these cases. Since aspects of comfort in cars are getting more and more important in nowadays these aspects should be taken into account very early in the interior car layout process. This paper shows a way to design the interior layout of a car from scratch for a good postural comfort for all anthropometries with the aid of a digital human model (RAMSIS). The novelty of this approach is to use the digital human model to design the interior and not to verify or correct an existing one.
Technical Paper

Sandwich Structure for Thermoplastic Body-Panels with Class-A Surface by Injection Molding

2006-04-03
2006-01-0131
Especially in horizontal applications of thermoplastic body-panels occurs a conflict between the required thermal stability (generally achieved with short glass fibers) and the high level surface finish as the reinforcements worsen the surface texture. The sandwich-molding procedure for bigger body-panels, developed further at BMW, offers an innovative solution to this problem. Two materials, one with good surface finish properties (material A) and another with glass fiber reinforcement (material B), are coinjected in a single process step. The result is a part with class-A surface (only material A visible at the surface), advanced mechanical and thermal properties. Additionally to an outstanding surface finish the body-panel exhibits small thermal expansion relevant for reduction of gaps to bordering parts.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
Technical Paper

Intelligent Automotive System Services - An Emerging Design Pattern for an Advanced E/E-Architecture

2006-04-03
2006-01-1286
The paper will introduce the concept of intelligent automotive system services as an essential pattern for forthcoming Electric/Electronic (E/E) architectures. System services are infrastructure-related, having vehicle-wide functionalities with one central part (master) and optionally several peripheral parts (clients) as counterparts in every ECU. System services support the reliable operation, efficient administration and maintenance of car functions over the entire life cycle. System services constitute vehicle-wide, distributed functionalities. Therefore, a consistent, interoperable and scalable implementation and integration strategy is outlined. In addition, synergies to the standard core as well as to the AUTOSAR concept will be described.
X