Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Journal Article

Simulation Process for the Acoustical Excitation of DC-Link Film Capacitors in Highly Integrated Electrical Drivetrains

2020-09-30
2020-01-1500
The advancing electrification of the powertrain is giving rise to new challenges in the field of acoustics. Film capacitors used in power electronics are a potential source of high-frequency interfering noise since they are exposed to voltage harmonics. These voltage harmonics are caused by semiconductor switching operations that are necessary to convert the DC voltage of the battery into three-phase alternating current for an electrical machine. In order to predict the acoustic characteristics of the DC-link capacitor at an early stage of development, a multiphysical chain of effects has to be addressed to consider electrical and mechanical influences. In this paper, a new method to evaluate the excitation amplitude of film capacitor windings is presented. The corresponding amplitudes are calculated via an analytical strain based on electromechanical couplings of the dielectric within film capacitors.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Technical Paper

System Level Design Simulation to Predict Passive Safety Performance for CFRP Automotive Structures

2013-04-08
2013-01-0663
Despite increasingly stringent crash requirements, the body structures of future mainstream production cars need to get lighter. Carbon fiber reinforced polymer (CFRP) composites with a density 1/5th of steel and very high specific energy absorption represent a material technology where substantial mass can be saved when compared to traditional steel applications. BMW have addressed the demanding challenges of producing several hundred composite Body-in-White (BIW) assemblies a day and are committed to significant adoption of composites in future vehicle platforms, as demonstrated in the upcoming i3 and i8 models. A next step to further integrate composites into passenger cars is for primary structural members, which also perform critical roles in passive safety by absorbing large amounts of energy during a crash event.
Technical Paper

Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions

2012-04-16
2012-01-0656
Plug-In Hybrid Electric Vehicles (PHEV) are becoming increasingly important as an intermediate step on the roadmap to Battery Electric Vehicles (BEV). Li-Ion is the most important battery technology for future hybrid and electrical vehicles. Cycle life of batteries for automotive applications is a major concern of design and development on vehicles with electrified powertrain. Cell manufacturers present various cell chemistries based on Li-Ion technology. For choosing cells with the best cycle life performance appropriate test methods and criteria must be obtained. Cells must be stressed with accelerated aging methods, which correlate with real life conditions. There is always a conflict between high accelerating factors for fast results on the one hand and best accordance with reality on the other hand. Investigations are done on three different Li-Ion cell types which are applicable in the use of PHEVs.
Video

BMW i3 - A Battery Electric Vehicle...Right from the Beginning

2012-03-29
What are the requirements of customers in an urban environment? What will sustainable mobility look like in the future? This presentation gives an overview of the integrated approach used by BMW to develop the BMW i3 - a purpose-built battery electric vehicle. Very low driving resistances for such a vehicle concept enable the delivery of both impressive range and driving excitement. A small optional auxiliary power unit offers range security for unexpected situations and opens up BEVs to customers who are willing to buy a BEV but are still hesitant due to range anxiety. Additional electric vehicles sold to the formerly range anxious will create additional electric miles. Presenter Franz Storkenmaier, BMW Group
Technical Paper

Test Center for Aging Analysis and Characterization of Lithium-Ion Batteries for Automotive Applications

2011-04-12
2011-01-1374
A test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications is optimized by means of a dedicated cell tester. The new power tester offers high current magnitude with fast rise time in order to generate arbitrary charge and discharge waveforms, which are identical to real power net signals in vehicles. Upcoming hybrid and electrical cars show fast current transients due to the implemented power electronics like inverter or DC/DC converter. The various test procedures consider single and coupled effects from current profile, state of charge and temperature. They are simultaneously applied on several cells in order to derive statistical significance. Comprehensive safely functions on both the hardware and the software level ensure proper operation of the complex system.
Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Journal Article

Mechanical Property Evaluation of Permanent-Mould Cast AM-SC1™ Mg-Alloy

2008-04-14
2008-01-0375
AM-SC1™ is a high temperature Mg alloy that was originally developed as a sand casting alloy for automotive powertrain applications. The alloy has been selected as the engine block material for both the AVL Genios LE and the USCAR lightweight magnesium engine projects. The present work assesses the potential of this alloy for permanent-mould die cast applications. Thermo-physical and mechanical properties of AM-SC1 were determined for material derived from a permanent-mould die casting process. The mechanical properties determined included: tensile, creep, bolt load retention/relaxation and both low and high cycle fatigue. To better assess the creep performance, a comparative analysis of the normalized creep properties was carried out using the Mukherjee-Dorn parameter, which confirmed the high viscoplastic performance of AM-SC1 compared with common creep resistant high pressure die cast (HPDC) Mg-alloys.
Technical Paper

A Modern Development Process to Bring Silence Into Interior Components

2007-04-16
2007-01-1219
Comfort and well-being have always been connected with a flawless interior acoustic, free of any background noise or BSR, (buzz, squeak and rattle). BSR noises dominate the interior acoustic and represent one of the main sources for discomfort often causing considerable warranty costs. Traditionally BSR issues have been identified and rectified through extensive hardware testing, which by its nature intensifies toward the end of the car development process. In the following paper the integration of a virtual BSR validation technique in a modern development process by the use of appropriate CAE methods is presented. The goal is to shift, in compliance with the front loading concept, the development activities into the early phase. The approach is illustrated through the example of an instrument panel, from the early concept draft for single components to an assessment of the complete assembly.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Computational Approach for Entry Simulation

2006-07-04
2006-01-2358
A comprehensive experimental study was conducted to investigate human movements when entering a vehicle. The primary goal of this study was to understand the influence of environmental changes on entry motions selected by a driver to enter a vehicle. The adjustable hardware setup “VEMO” (Variable Entry Mockup) was used for the experiments. With VEMO it is possible to simulate different types and classes of vehicle configurations. Around 30 test persons of different anthropometry participated in the experiments. The visual measurement system VICON was used for motion capturing, motion data cleaning and biomechanical analysis. The results corroborate the theory of leading body parts (LBPs) i.e. body parts that control targeted movement of the entire body. It could be demonstrated how motion patterns of LBPs, including spatial and dynamic characteristics such as orientation and velocity, respond to modifications of the geometrical environment.
Technical Paper

Sandwich Structure for Thermoplastic Body-Panels with Class-A Surface by Injection Molding

2006-04-03
2006-01-0131
Especially in horizontal applications of thermoplastic body-panels occurs a conflict between the required thermal stability (generally achieved with short glass fibers) and the high level surface finish as the reinforcements worsen the surface texture. The sandwich-molding procedure for bigger body-panels, developed further at BMW, offers an innovative solution to this problem. Two materials, one with good surface finish properties (material A) and another with glass fiber reinforcement (material B), are coinjected in a single process step. The result is a part with class-A surface (only material A visible at the surface), advanced mechanical and thermal properties. Additionally to an outstanding surface finish the body-panel exhibits small thermal expansion relevant for reduction of gaps to bordering parts.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
Technical Paper

The European Union Mg-Engine Project - Generation of Material Property Data for Four Die Cast Mg-Alloys

2006-04-03
2006-01-0070
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
Technical Paper

Paint Bake Response on the Vehicle

2006-04-03
2006-01-0985
The average weight of a car has increased significantly in recent years due to higher crash requirements and demands in standard equipment. Therefore, BMW has decided to use aluminium for the body front end of the new BMW 5-series. During the paint process, the 6XXX-alloys currently adopted for the body front end exhibit a considerable increase in yield strength in the E-coat dryer. The increase of strength, the so-called paint bake response of 6XXX-alloys, needs to be fully exploited to meet the increasing demand of future passive safety concepts.
Technical Paper

Intelligent Automotive System Services - An Emerging Design Pattern for an Advanced E/E-Architecture

2006-04-03
2006-01-1286
The paper will introduce the concept of intelligent automotive system services as an essential pattern for forthcoming Electric/Electronic (E/E) architectures. System services are infrastructure-related, having vehicle-wide functionalities with one central part (master) and optionally several peripheral parts (clients) as counterparts in every ECU. System services support the reliable operation, efficient administration and maintenance of car functions over the entire life cycle. System services constitute vehicle-wide, distributed functionalities. Therefore, a consistent, interoperable and scalable implementation and integration strategy is outlined. In addition, synergies to the standard core as well as to the AUTOSAR concept will be described.
Technical Paper

AJ (Mg-Al-Sr) Alloy Mechanical Properties: From Fatigue to Crack Propagation

2005-04-11
2005-01-0729
In addition to the creep properties, the fatigue properties are essential for the design of a power-train component in Mg which is operated at elevated temperatures. In case of the new BMW I6 composite Mg/Al crankcase using the AJ alloy system, material testing focused on both subjects. The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high-pressure die cast components. Tensile, high cycle fatigue properties, low cycle fatigue and crack propagation properties were established and analyzed within the technical context for power-train applications reflected in the temperature and load levels. The aspects of mean stress influence, notch sensitivity and crack propagation are evaluated to estimate the performances of the AJ62A alloy system.
X