Refine Your Search

Topic

Author

Search Results

Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Journal Article

Simulation Process for the Acoustical Excitation of DC-Link Film Capacitors in Highly Integrated Electrical Drivetrains

2020-09-30
2020-01-1500
The advancing electrification of the powertrain is giving rise to new challenges in the field of acoustics. Film capacitors used in power electronics are a potential source of high-frequency interfering noise since they are exposed to voltage harmonics. These voltage harmonics are caused by semiconductor switching operations that are necessary to convert the DC voltage of the battery into three-phase alternating current for an electrical machine. In order to predict the acoustic characteristics of the DC-link capacitor at an early stage of development, a multiphysical chain of effects has to be addressed to consider electrical and mechanical influences. In this paper, a new method to evaluate the excitation amplitude of film capacitor windings is presented. The corresponding amplitudes are calculated via an analytical strain based on electromechanical couplings of the dielectric within film capacitors.
Technical Paper

Frequency and Temperature Dependent Stiffness and Damping Properties of Reduced Viscoelastic Structures Using Component Mode Synthesis (CMS)

2018-06-13
2018-01-1498
Model Order Reduction (MOR) methods such as Component Mode Synthesis (CMS) have been used in order to simulate large linear dynamic systems for many years and have reached a considerable level of saturation. These reduction methods have many advantages such as minimizing computational costs but also have restrictions. One of their disadvantages is that material damping characteristics can only be defined in form of Rayleigh damping. Another disadvantage is that the reduced order model can only represent one state of the structure determined in the generation process of the reduced matrices. In this paper we present a way to consider material damping in reduced matrices that contain one or more materials having different damping characteristics without the disadvantages of using Rayleigh damping.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

System Level Design Simulation to Predict Passive Safety Performance for CFRP Automotive Structures

2013-04-08
2013-01-0663
Despite increasingly stringent crash requirements, the body structures of future mainstream production cars need to get lighter. Carbon fiber reinforced polymer (CFRP) composites with a density 1/5th of steel and very high specific energy absorption represent a material technology where substantial mass can be saved when compared to traditional steel applications. BMW have addressed the demanding challenges of producing several hundred composite Body-in-White (BIW) assemblies a day and are committed to significant adoption of composites in future vehicle platforms, as demonstrated in the upcoming i3 and i8 models. A next step to further integrate composites into passenger cars is for primary structural members, which also perform critical roles in passive safety by absorbing large amounts of energy during a crash event.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part 1

2011-04-12
2011-01-0177
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part2

2011-04-12
2011-01-0164
Unsteady aerodynamic flow phenomena are investigated in a wind tunnel by oscillating a realistic 50% scale model around the vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi steady loads. In particular, the unsteady yaw moment exceeds the quasi steady approximation significantly. On the other hand, side force and roll moment are over predicted by quasi steady approximation but exhibit a significant time delay. Part 2 of this study proves that a delayed and enhanced response of the surface pressures at the rear side of the vehicle is responsible for the differences between unsteady and quasi steady loads. The pressure changes at the vehicle front, however, are shown to have similar amplitudes and almost no phase shift compared to quasi steady flow conditions.
Technical Paper

The Impact of Hybrid-Electric Powertrains on Chassis Systems and Vehicle Dynamics

2009-04-20
2009-01-0442
While hybrid-electric powertrain features such as regenerative braking and electric driving can improve the fuel economy of a vehicle significantly, these features may also have a considerable impact on driving dynamics. That is why extra effort is necessary to ensure safety and comfort that customers usually expect from a conventional vehicle. The purpose of this paper is to initiate a discussion regarding different drivetrain concepts, necessary changes in chassis systems, and the impact on vehicle dynamics. To provide input to this essential discussion, braking and steering systems, as well as suspension design, are analyzed regarding their fit with hybrid systems. It is shown how an integration of hybrid technology and chassis systems benefits vehicle dynamics and why “by-wire” technology is a key enabler for safe and comfortable hybrid-electric vehicles.
Technical Paper

Virtual Validation of Assembly Processes with Digital Human Models — Optimizing the Human-Computer Interaction

2008-06-17
2008-01-1901
Today digital 3D human models are widely used to support the development of future products and in planning and designing production systems. However, these virtual models are generally not sufficiently intuitive and configuring accurate and real body postures is very time consuming. Furthermore, additionally using a human model to virtually examine manual assembly operations of a vehicle is currently synonymous with increased user inputs. In most cases, the user is required to have in-depth expertise in the deployed simulation system. In view of the problems described, in terms of human-computer interaction, it is essential to research and identify the requirements for simulation with digital human models. To this end, experienced staff members gathered the requirements which were then evaluated and weighted by the potential user community. Weaknesses of the simulation software will also be detected, permitting optimisation recommendations to be identified.
Journal Article

Mechanical Property Evaluation of Permanent-Mould Cast AM-SC1™ Mg-Alloy

2008-04-14
2008-01-0375
AM-SC1™ is a high temperature Mg alloy that was originally developed as a sand casting alloy for automotive powertrain applications. The alloy has been selected as the engine block material for both the AVL Genios LE and the USCAR lightweight magnesium engine projects. The present work assesses the potential of this alloy for permanent-mould die cast applications. Thermo-physical and mechanical properties of AM-SC1 were determined for material derived from a permanent-mould die casting process. The mechanical properties determined included: tensile, creep, bolt load retention/relaxation and both low and high cycle fatigue. To better assess the creep performance, a comparative analysis of the normalized creep properties was carried out using the Mukherjee-Dorn parameter, which confirmed the high viscoplastic performance of AM-SC1 compared with common creep resistant high pressure die cast (HPDC) Mg-alloys.
Journal Article

An Approach to Model Sheet Failure After Onset of Localized Necking in Industrial High Strength Steel Stamping and Crash Simulations

2008-04-14
2008-01-0503
In large-scale industrial simulations the numerical prediction of fracture in sheet metal forming operations as well as in crash events is still a challenging task of high social and economic relevance. Among several approaches presented in literature, the authors and their colleagues developed a model which accounts each for three different mechanisms leading finally to fracture in thin sheet metals: the local instability (necking), ductile normal fracture and ductile shear fracture. The focus of this paper is to develop and validate a new approach to improve the predictive capabilities for fracture triggered by localized necking for a wide variety of steel grades. It is well known that after the onset of a local instability additional strain is still necessary to induce fracture. In a numerical simulation using shell elements this post instability strain becomes of increasing importance when the ratio of the characteristic shell element edge length to its thickness decreases.
Technical Paper

Experimental Analysis of the Underbody Pressure Distribution of a Series Vehicle on the Road and in the Wind Tunnel

2008-04-14
2008-01-0802
Underbody aerodynamics has become increasingly important over the last three decades because of its vital contribution to improving a vehicle's overall performance. This was the motivation for the research conducted by BMW Aerodynamics, concerning the determination of the overall pressure distribution on the underbody of a series-production vehicle. Static pressure measurements have been taken under various test conditions. Real on-road tests were carried out as well as wind tunnel experiments under application of different road simulation techniques. The analyzed vehicle configurations include wheel rim-tire and body modifications. The results presented include surface pressure data, drag and lift coefficients, ride heights, pitch and roll angles. The acquired data is used to examine the underbody flow topology and determine how the diverse attempts to represent the real on-road conditions affect its pressure distribution.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2400
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

On Various Aspects of the Unsteady Aerodynamic Effects on Cars Under Crosswind Conditions

2007-04-16
2007-01-1548
Currently, the aerodynamic development of a car concentrates on steady state aerodynamic forces. Development is mainly performed in wind tunnels with very low turbulence. On the road we find other boundary conditions. Natural wind, other cars and trucks influence the yawing moment and the side force. During acceleration and deceleration the vehicle speed is not constant, the effect of unsteady aerodynamic forces is especially important and can not be neglected. The approach to measure unsteady effects is to use a wind tunnel that has the capability to produce unsteady flow and in addition to instrument a car to drive under natural windy conditions. The wind tunnel, with its reproducible conditions, allows measurements to be made with well defined frequencies of the approaching flow. This is important since the aerodynamic forces are not sensitive to all frequencies in the same way. One way to increase driving comfort is to reduce these forces at specific frequencies.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Sandwich Structure for Thermoplastic Body-Panels with Class-A Surface by Injection Molding

2006-04-03
2006-01-0131
Especially in horizontal applications of thermoplastic body-panels occurs a conflict between the required thermal stability (generally achieved with short glass fibers) and the high level surface finish as the reinforcements worsen the surface texture. The sandwich-molding procedure for bigger body-panels, developed further at BMW, offers an innovative solution to this problem. Two materials, one with good surface finish properties (material A) and another with glass fiber reinforcement (material B), are coinjected in a single process step. The result is a part with class-A surface (only material A visible at the surface), advanced mechanical and thermal properties. Additionally to an outstanding surface finish the body-panel exhibits small thermal expansion relevant for reduction of gaps to bordering parts.
Technical Paper

Wash off Resistant 1-Component Structural Adhesives

2006-04-03
2006-01-0975
The application of crash durable structural adhesives in modern cars design, to improve the driving durability, the overall vehicle stiffness, the crash resistance and to make real light weight constructions feasible is significantly gaining in importance. 1-component systems are already introduced in the market and used in automotive industries. Usually the use of these bonds in automotive industries is limited by a relatively low wash off resistance in the pre-treatment tanks of the paint shop. If no additional actions are taken, there is a severe risk of wash off of the adhesives up to the partial loss in functionality. Respectively contamination of the pre-treatment tanks and aftereffects damage the surface of the coated cars. To avoid wash off a thermal process (oven) to pre-gel the adhesive in the flanges of the Body-In-White (BIW)- bodies before entering the pre-treatment utility is necessary. This is a save but cost intensive solution.
Technical Paper

GPS Augmented Vehicle Dynamics Control

2006-04-03
2006-01-1275
Measurements from a Global Navigation System in conjunction with an Inertial Measurement Unit were recently introduced in different aerial and ground vehicles as an input to control vehicle dynamics. In automobiles this approach could help to further improve braking and / or stability control systems as information like velocity over ground and side slip angle becomes available. This paper presents the technical background, validation through test results and the evaluation of potential benefits of such an “INS/GPS” setup. As a result of the extended measuring capabilities a reduction in braking distance and a more effective stability control becomes possible. The results show an excellent performance that should be exploited in future automotive applications.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
X