Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Modularized Simulation Tool to Evaluate Battery Solutions for 12 V Advanced Start Stop Vehicles

2018-04-03
2018-01-0446
The 12 V advanced start stop systems can offer 5-8% fuel economy improvement over a conventional vehicle. Although the fuel economy is not as high as those of mild to full hybrids, its low implementation cost makes it an attractive electrification solutions for vehicles. As a result, the 12 V advanced start stop technology has been evolving fast in recent years. On one hand, battery suppliers are offering a variety of energy storage solutions such as stand-alone lead acid, stand-alone LFP/Graphite, dual batteries of lead acid parallel with NMC/LTO, LMO/LTO, NMC/Graphite, and capacitors, etc. For dual battery solutions, the architecture also varies from passive parallel connection to active switching. On the other hand, OEM are considering to leverage a lot more use out of traditional 12 V SLI (start, light, and ignition) for functions such as power steering, air conditioning, heater, etc.
Technical Paper

Cooling Parasitic Considerations for Optimal Sizing and Power Split Strategy for Military Robot Powered by Hydrogen Fuel Cells

2018-04-03
2018-01-0798
Military vehicles are typically armored, hence the open surface area for heat rejection is limited. Hence, the cooling parasitic load for a given heat rejection can be considerably higher and important to consider upfront in the system design. Since PEMFCs operate at low temp, the required cooling flow is larger to account for the smaller delta temperature to the air. This research aims to address the combined problem of optimal sizing of the lithium ion battery and PEM Fuel Cell stack along with development of the scalable power split strategy for small a PackBot robot. We will apply scalable physics-based models of the fuel cell stack and balance of plant that includes a realistic and scalable parasitic load from cooling integrated with existing scalable models of the lithium ion battery. This model allows the combined optimization that captures the dominant trends relevant to component sizing and system performance.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Journal Article

Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application

2017-03-28
2017-01-1201
Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications.
Technical Paper

Integrating Feedback Control Algorithms with the Lithium-Ion Battery Model to Improve the Robustness of Real Time Power Limit Estimation

2017-03-28
2017-01-1206
Power limit estimation of a lithium-ion battery system plays an important balancing role of optimizing the battery design cost, maximizing for power and energy, and protecting the battery from abusive usage to achieve the intended life. The power capability estimation of any given lithium-ion battery system is impacted by the variability of many sources, such as cell and system components resistance, temperature, cell capacity, and real time state of charge and state of health estimation errors. This causes a distribution of power capability among battery packs that are built to the same design specification. We demonstrated that real time power limit estimation can only partially address the system variability due to the errors introduced by itself. Integrating feedback control algorithms with the lithium-ion battery model maximizes the battery power capability, improves the battery robustness to variabilities, and reduces the real time estimation errors.
Journal Article

A Thermal Bus for Vehicle Cooling Applications - Design and Analysis

2017-03-28
2017-01-0266
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
Journal Article

Control Strategies for Power Quantized Solid Oxide Fuel Cell Hybrid Powertrains: In Mobile Robot Applications

2016-04-05
2016-01-0317
This paper addresses scheduling of quantized power levels (including part load operation and startup/shutdown periods) for a propane powered solid oxide fuel cell (SOFC) hybridized with a lithium-ion battery for a tracked mobile robot. The military requires silent operation and long duration missions, which cannot be met by batteries alone due to low energy density or with combustion engines due to noise. To meet this need we consider an SOFC operated at a few discrete power levels where maximum system efficiency can be achieved. The fuel efficiency decreases during transients and resulting thermal gradients lead to stress and degradation of the stack; therefore switching power levels should be minimized. Excess generated energy is used to charge the battery, but when it’s fully charged the SOFC should be turned off to conserve fuel.
Technical Paper

Model Development and Simulations of 12V Dual Batteries towards Design Optimization of Microhybrid Vehicles

2015-04-14
2015-01-1199
The microhybrid electric vehicle (MHEV) has increasingly received attention since it holds promise for significant increases in fuel economy vs. traditional gasoline vehicles at a lower price point than hybrid vehicles. Passive parallel connection of the traditional 12V lead acid battery and a high power lithium ion battery has been identified as a potential architecture that will facilitate fuel economy improvements with minimal changes to the electrical network. Enabling a passive dual-battery connection requires a design match between the two batteries, including characteristics such as battery size and resistance, so that the performance can be optimized. In this work we have developed a hybrid model that couples electrochemical model of lithium ion battery (NMC-Graphite as an example) and an equivalent circuit model of lead acid battery in order to study the behavior of 12V dual-battery microhybrid architectures.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

Parametric Reduced-Order Models of Battery Pack Vibration Including Structural Variation and Pre-Stress Effects

2013-05-13
2013-01-2006
The goal of this work is to develop an efficient numerical modeling method for the vibration of hybrid electric vehicle (HEV) battery packs to support probabilistic forced response simulations and fatigue life predictions. There are two important sources of variations in HEV battery packs that affect their structural dynamic response. One source is the uncertain level of pre-stress due to bolts or welds used for joining cells within a pack. The other source is small structural variations among the cells of a battery pack. The structural dynamics of HEV battery packs are known to feature very high modal density in many frequency bands. That is because packs are composed of nominally identical cells. The high modal density combined with small, random structural variations among the cells can lead to drastic variations in the dynamic response compared with those of the ideal nominal system.
Journal Article

Model-Based Analysis of Cell Balancing of Lithium-ion Batteries for Electric Vehicles

2013-04-08
2013-01-1755
Cell balancing is a key function of battery management system (BMS) that is implemented to maximize the battery's available capacity and service life. The increasing demand of larger and better performance pack has raised the need to investigate the various cell balancing techniques so that the energy of the battery can be fully realized. In this work we develop a phenomenological model in order to quantify the benefits of passive balancing and active balancing. The electrical response of a model pack consisting of serially connected lithium ion cells is simulated with Matlab. The effects of the variance of cell capacity, internal resistance, self-discharge rates, pack configuration and size are studied. The possible optimization rooms for implementing passive and active balancing are suggested.
Journal Article

Frequency Domain Power Distribution Strategy for Series Hybrid Electric Vehicles

2012-04-16
2012-01-1003
Electrification and hybridization have great potential for improving fuel economy and reducing visual signature or soot emissions in military vehicles. Specific challenges related to military applications include severe duty cycles, large and uncertain energy flows through the system and high thermal loads. A novel supervisory control strategy is proposed to simultaneously mitigate severe engine transients and to reduce high electric current in the battery without oversizing the battery. The described objectives are accomplished by splitting the propulsion power demand through filtering in the frequency domain. The engine covers only low frequency power demand profile while the battery covers high frequency components. In the proposed strategy, the separation filter is systematically designed to identify different frequency components with the consideration of fuel consumption, aggressive engine transients, and battery electric loads.
Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Technical Paper

Simulation Based Assessment of Plug-in Hybrid Electric Vehicle Behavior During Real-World 24-Hour Missions

2010-04-12
2010-01-0827
This paper proposes a simulation based methodology to assess plug-in hybrid vehicle (PHEV) behavior over 24-hour periods. Several representative 24-hour missions comprise naturalistic cycle data and information about vehicle resting time. The data were acquired during Filed Operational Tests (FOT) of a fleet of passenger vehicles carried out by the University of Michigan Transportation Research Institute (UMTRI) for safety research. Then, PHEV behavior is investigated using a simulation with two different charging scenarios: (1) Charging overnight; (2) Charging whenever possible. Charging/discharging patterns of the battery as well as trends of charge depleting (CD) and charge sustaining (CS) modes at each scenario were assessed. Series PHEV simulation is generated using Powertrain System Analysis Toolkit (PSAT) developed by Argonne National Laboratory (ANL) and in-house Matlab codes.
Technical Paper

Efficient Batteries for Transportation Applications

2008-10-20
2008-21-0017
This paper reviews and analyzes the current and future battery technologies suitable for transportation applications. The success of battery-enabled hybridization of gasoline and diesel power-trains in the past decade has clearly established it as the most credible alternative to the conventional propulsion systems. The current enthusiasm for electric vehicles further accentuates this success. In this paper, we compare the performance of a number of established and emerging battery technologies against the now well-established performance targets for electric-drive vehicles. Lithium-ion cells' superior performance and life are described, as are requirements for supplantation of NiMH cells in vehicles. Trends are discussed in technology development, which has largely been achieved through insertion of Li technologies in consumer electronics. Recent developments have given rise to several variants of the Li ion chemistry.
X