Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Comparison of Sacroiliac and Pubic Rami Fracture Occurrences in Oblique Side Impact Tests on Nine Post Mortem Human Subjects

2015-11-09
2015-22-0002
The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy / Mx peak values were 4500 N / 50 Nm, 2400 N / 130 Nm, and 5300 N / 150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s.
Technical Paper

Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests

2014-11-10
2014-22-0004
Despite the increasing knowledge of the thorax mechanics in impact loadings, the effects of inter-individual differences on the mechanical response are difficult to take into account. For example, the biofidelity corridors for the small female or large male are extrapolated from the midsize male corridors. The present study reports on the results of new tests performed on small female Post Mortem Human Subjects (PMHS), and compares them with test results on midsize male PMHS. Three tests in pure side impact and three tests in forward oblique impact were performed on the thorax of small female specimens. The average weight and stature were 43 kg and 1.58 m for the small female specimens. The initial speed of the impactor was 4.3 m/s. The mass and the diameter of the impactor face were respectively 23.4 kg and 130 mm. The instrumentation and methodology was the same as for the tests published in 2008 by Trosseille et al. on midsize male specimens.
Technical Paper

Evaluation of Thoracic Deflection as an Injury Criterion for Side Impact Using a Finite Elements Thorax Model

2009-11-02
2009-22-0006
This study aims to investigate the relationship between the number of rib fractures and the thoracic deflection in side impact, and in particular its variability with respect to various loading configurations. The relevance of thoracic deflection as an injury criterion depends on the existence or not of this variability. Few studies were dedicated to this issue in the literature. First, a validation database was established, which covers different impact directions (frontal, lateral and oblique), different loading types (impactor, belt and airbag), and different injury levels (from the absence of, to presence of numerous ribs fractured). The HUMOS human body model was then modified and validated versus the database. Besides the typical validation in terms of global response, particular attention was paid to validate the model with respect to the ribcage strain profile, the occurrence of rib fractures and their locations.
Technical Paper

The Effect of Angle on the Chest Injury Outcome in Side Loading

2009-11-02
2009-22-0014
Thoracic injury criteria and injury risk curves in side impact are based on impactor or sled tests, with rigid or padded surfaces while airbags are very common on current cars. Besides, the loading is generally pure lateral while real crashes or regulations can generate oblique loadings. Oblique tests were found in the literature, but no conclusion was drawn with regard to the effect of the direction on the injury outcome. In order to address these two limitations, a series of 17 side airbag tests were performed on Post Mortem Human Subjects (PMHS) at different severities and angles. The subjects were instrumented with accelerometers on the spine and strain gauges on the ribs. They were loaded by an unfolded airbag at different distances in pure lateral or 30 degrees forward. The airbag forces ranged from 1680 N to 6300 N, the injuries being up to 9 separated fractured ribs. This paper provides the test results in terms of physical parameters and injury outcome of the 17 subjects.
X